Skip to main content

Review on Radio Frequency Micro Electro Mechanical Systems (RF-MEMS) Switch

  • Chapter
  • First Online:
International Conference on Communication, Computing and Electronics Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 637))

Abstract

Miniaturization of mechanical or electromechanical systems has paved the way to develop Micro Electro Mechanical Systems (MEMS), and they have the potentials for application in communication systems. Radio Frequency MEMS (RF-MEMS) switches can be used as an alternative to mechanical and semiconductor devices-based switches such as PIN diodes or varactor diodes for their better isolation, reduced insertion loss, low-power consumption and higher-power handling capabilities. There are various constraints involved in designing RF-MEMS switch like finite or limited time to toggle, prone to failure, power handling capacity, RF performance, material selection, etc. Hence, it is necessary to properly select key parameters and optimize the switch to achieve desired outcome for specific applications. This paper discusses design constraints and various parameters involved in designing RF-MEMS switch. From the review, it is found that shunt-type configuration of RF-MEMS switch with electrostatic actuation, capacitive contact type and bridge structure are suitable for millimetre wave applications which are explored for future bandwidth hungry communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsu, T.-R.: MEMS and Microsystems: Design and Manufacture. McGraw Hill Education Private Limited (2002)

    Google Scholar 

  2. Rebeiz, G.M.: RF MEMS Theory, Design, and Technology. Wiley, New York (2003)

    Google Scholar 

  3. Brown, E.R.: RF MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microw. Theory Tech. 46, 1868–1880 (1998)

    Article  Google Scholar 

  4. Varadan, V.K., Vinoy, K.J., Jose, K.A.: RF MEMS and Their Applications. Wiley, New York (2011)

    Google Scholar 

  5. Nguyen, C.T.C.: Microelectromechanical system for wireless communication. In: The 11th Annual International workshop on Micro Electro Mechanical Systems. Heidelberg, Germany, pp. 1–7 (1998)

    Google Scholar 

  6. Zhang, S., Ying, Z.N., Xiong, J., He, S.L.: Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wirel. Propag. Lett. 8, 1279–1282 (2009)

    Article  Google Scholar 

  7. Zhu, Y.-Q., Han, L., Tang, J.-Y.: MEMS Switch Manages Millimeter-Wave Signals”, Microwaves & RF, pp. 58–65, Nov 2013

    Google Scholar 

  8. Chang, K.: Microwave Solid State Circuits and Application. Wiley, Chichester, Sussex (1994)

    Google Scholar 

  9. Mafinejad, Y., et al.: Design and Simulation of a RF Mems Shunt Switch for Ka and V Bands and the Impact of Varying Its Geometrical Parameters. IEEE, pp. 823–826 (2009)

    Google Scholar 

  10. Rebeiz, G.M., Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microw. Mag. 2, 59–71 (2001)

    Article  Google Scholar 

  11. Mansour, R.R., et al.: RF MEMS devices. In: Proceedings of the International Conference on MEMS, NANO and Smart Systems, pp. 103–107 (2003)

    Google Scholar 

  12. Hindle, P.: The state of RF/microwave switch devices. J. Microw. 53(11), 20–36 (2010)

    Google Scholar 

  13. Wipf, S.T., et al.: D-band RF MEMS SPDT switch in a 13 µm SiGe BiCMOS technology. IEEE Microw. Wirel. Compon. Lett. 26, 1002–1004 (2016)

    Article  Google Scholar 

  14. Peterson, K.E.: Micromechanical membrane switches on silicon. IBM J. Res. Dev. 23, 376–385 (1979)

    Article  Google Scholar 

  15. Brown, E.R.: RF MEMS for reconfigurable integrated circuits. IEEE Trans. Theory Technol. 46, 1868–1880 (1998)

    Article  Google Scholar 

  16. Vinoy, K.J., et al.: Surface micromachined capacitive RF switches with low actuation voltage and steady contact. J. Microelectromech. Syst. 26, 643–652 (2017)

    Article  Google Scholar 

  17. Persano, A., et al.: Influence of design and fabrication on RF performance of capacitive RF MEMS switches. Microsyst. Tachnol. 22, 1741–1746 (2016)

    Article  Google Scholar 

  18. Muldavin, J.B., Rebeiz, G.B.: High isolation CPW MEMS shunt switches—part I: modeling. IEEE Trans. Microw. Theory Tech. 48, 1045–1052 (2000)

    Article  Google Scholar 

  19. Khodaddy, K., et al.: Design and modelling of a novel RF MEMS series switch with low actuation voltage. Microsyst. Technol. 22(12), 2921–2929 (2015)

    Article  Google Scholar 

  20. Muldavin, J.B., Rebeiz, G.B.: High isolation CPW MEMS shunt switches—part I: design. IEEE Trans. Microw. Theory Tech. 48, 1053–1056 (2000)

    Article  Google Scholar 

  21. Jung, C.W., De Flaviis, F.: RF-MEMS capacitive series of CPW&MSL configurations for reconfigurable antenna application. In: IEEE Antennas and Propagation Society International Symposium, vol. 2A, pp. 425–428, July 2005

    Google Scholar 

  22. George, R., et al.: Design of series RF MEMS switches suitable for reconfigurable applications. In: IEEE-Proceedings of ICCPCT (2017)

    Google Scholar 

  23. Zhang, L.X., Zhao, Y.P.: Electromechanical model of RF MEMS switches. Microsyst. Technol. 9, 420–426 (2003)

    Article  Google Scholar 

  24. Cho, I.J., et al.: A low voltage and low power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005)

    Article  Google Scholar 

  25. He, X.J., et al.: Electrothermally actuated RFMEMS capacitive switch with atomic layer deposited dielectric. In: 16th International IEEE Conference, pp. 2470–2473 (2011)

    Google Scholar 

  26. Bachman, M., et al.: High power magnetically actuated microswitches fabricated in laminates. IEEE Electron. Dev. Lett. 33, 1309–1311 (2012)

    Article  Google Scholar 

  27. Guerre, R., et al.: Wafer level transfer technologies for PZT based RF MEMS switches. J. Microelectromech. Syst. 19, 548–560 (2010)

    Article  Google Scholar 

  28. Molaei, S., Ganji, B.A.: Design and simulation of a noval RF MEMS shumt capacitive switch with low actuation voltage and high isolation. J. Microsyst. Tech. 23(6), 1907–1912 (2016)

    Article  Google Scholar 

  29. Li, M., et al.: Design and fabrication of a low insertion loss capacitive RF MEMS switch with noval micro structures for actuation. Solid State Electron. 127, 32–37 (2016)

    Article  Google Scholar 

  30. Lee, H.C., et al.: Design, fabrication and RF performance of two different types of piezoelectrically actuated Ohmic MEMS switches. J. Micromech. Microeng. 15, 2098–2104 (2009)

    Article  Google Scholar 

  31. Van Spenger, W.M., et al.: On the physics of stiction and its impact on the reliability of microstructures. J. Adhes. Sci. Technol. 17, 563–582 (2003)

    Article  Google Scholar 

  32. Czaplewski, D.A., et al.: Lifeime limitations of Ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts. J. Micromech. Microeng. 15, 2098–2104 (2009)

    Google Scholar 

  33. Goldsmith, L., et al.: Performance of low loss RF MEMS capacitive switches. IEEE Microw. Guided Wave Lett. 8, 269–271 (1998)

    Article  Google Scholar 

  34. Mafinejad, Y., et al.: Low insertion loss and high isolation capacitive RF MEMS switch with low pull-in voltage. Int. J. Adv. Manuf. Technol. 93(1), 661–670 (2017)

    Article  Google Scholar 

  35. Sawant, B., et al.: Modeling and analysis of low voltage, high isolation capacitive type RF MEMS switches. In: IEEE, ICCCNT 2018, IISC India, July 2018

    Google Scholar 

  36. Rahman, H.U., et al.: Cantilever beam design for RF MEMS switches. Micromech. Microeng 20, 1–12 (2010)

    Article  Google Scholar 

  37. Vakilian, M., et al.: Optimization of cantilever based MEMS switch used in reconfigurable antennas. In: IEEEICSE 2012 Proceedings, 2012, Kuala Lumpur, Malaysia

    Google Scholar 

  38. Hu, G.-W., Liu, Z.-W., Hou, Z.-H., Liu, L.-T., Li, Z.-J.: A dielectric bridge type series contact switch 0–10 GHz applications. In: 2006 8th International Conference on Solid State and Integrated Circuit Technology Proceedings, pp. 542–544, 23–26 Oct 2006

    Google Scholar 

  39. Saha, S.C., et al.: Modeling of spring constant and pull down voltage of non-uniform RF MEMS cantilever incorporating stress gradiant. J. Sens. Trans. 11, 54–68 (2008)

    Google Scholar 

  40. Liu, Y., et al.: A compact single-cantilever multicontact RF MEMS switch with enhanced reliability. IEEE Microw. Wirel. Compon. Lett. 28, 191–193 (2018)

    Article  Google Scholar 

  41. Sravani, K.G., et al.: Role of dielectric layer and beam membrane in improving the performance of capacitive RF MEMS switches for Ka band applications. Microsyst. Technol. (2018)

    Google Scholar 

  42. Zhang, N., et al.: Design and performance of a J band MEMS switch. MDPI Micromach. 10(7), 467 (2019)

    Article  Google Scholar 

  43. Roark, R.J., Young, W.C.: Formulas for Stress and Strain, 6th edn. McGraw-Hill, New York (1989)

    Google Scholar 

  44. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials, 4th edn. PWS Publishing Company, Boston (1997)

    Google Scholar 

  45. Fedder, G.: MEMS fabrication. In: Proceedings of the IEEE International Test Conference, 30 Sept–2 Oct 2003

    Google Scholar 

  46. Gupta, A.K., Sharma, N.: Investigation of actuation voltage for non-uniform serpentine flexure design of RF MEMS switch. Springer Microsyst. Technol. 20, 413–418 (2014)

    Article  Google Scholar 

  47. Yun, W.: A surface micromachined accelerometer with integrated CMOS detection circuitry. Ph.D. thesis. University of California, Berkeley, CA (1992)

    Google Scholar 

  48. Fedder, G. K.: Simulation of microelectromechanical systems. Ph.D. thesis. University of California, Berkeley, CA (1994)

    Google Scholar 

  49. Pacheco, S.P., et al.: Design of low actuation voltage MEMS switch microwave symposium digest. IEEE MTT-S International, vol. 1, pp. 165–168 (2000)

    Google Scholar 

  50. Badia, M.F.B.: RF MEMS shunt capacitive switches using AIN compared to Si3N4 dielectric. J. Microelectromech. Syst. 21(5), 1229–1240 (2012)

    Article  Google Scholar 

  51. Wei, H., et al.: High on/off capacitance ratio RF MEMS capacitive switches. Micromach. Microeng. 27(5), 055002 (2017)

    Article  Google Scholar 

  52. Park, J.Y., et al.: Monolithically integrated micromachined RF MEMS capacitive switches. Sensors 89, 88–94 (2001)

    Google Scholar 

  53. Persano, A., et al.: Ta2O5 thin films for capacitive RF MEMS switches. J. Sens. 2010, 5 (2010)

    Article  Google Scholar 

  54. Wang, G., et al.: Novel reliable RF capacitive MEMS switches with photodefinable metal-oxide dielectrics. J. Microelectromech. Syst. 16, 550–555 (2007)

    Article  Google Scholar 

  55. Kogut, L.: The influence of surface topography on the electromechanical characteristics of parallel-plate MEMS capacitors. J. Micromech. Microeng. 15, 1068–1075 (2005)

    Article  Google Scholar 

  56. Yu, A.B., Liu, A.Q., Zhang, Q.X., Hosseini, H.M.: Effect of surface roughness on electromagnetic characteristics of capacitive switches. J. Micromech. Microeng. 16(10), 2157 (2006)

    Article  Google Scholar 

  57. Goldsmith, C.L., Forchand, D.I.: Temperature variation of actuation voltage in capacitive MEMS switches. IEEE Microw. Wireless Compon. Lett. 15, 718–720 (2005)

    Article  Google Scholar 

  58. Hosseinzadeh, S., Zehtabchi, A.R., Habibnejad. M.: Determination the effects of structural parameters on pull down voltage of RFMEMS switches. In: Microwave Conference. IEEE (2007)

    Google Scholar 

  59. Agarwal, S., Kashyap, R., Guha, K., Baishya, S.: Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.10.022

    Article  Google Scholar 

  60. Philippine, M.A., et al.: Experimental validation of topology optimization for RF MEMS capacitive switch design. J. Microelectromech. Syst. 22, 1296–1309 (2013)

    Article  Google Scholar 

  61. Muldavin, J.B., Rebeiz, G.B.: High isolation CPW MEMS shunt switches—part I: modeling. IEEE Trans. Microw. Theory Techn. 48, 1045–1052 (2000)

    Article  Google Scholar 

  62. Ansari, H.R., et al.: Design and simulation of a novel RF MEMS shunt capacitive switch with a unique spring for Ka-band application. J. Microsyst. Technol. 25(2), 531–540 (2018)

    Article  Google Scholar 

  63. Mafinejad, Y., et al.: Design and simulation of a high isolation RF MEMS shunt capacitive switch for C-K band. IEICE Electron. Exp. 10, 1–8 (2013)

    Article  Google Scholar 

  64. Rebeiz, G.M., Entesari, K., Reines, I.C., Park, S.-J., El-Tanani, M., Grichener, A., Brown, A.R., et al.: Tuning into RF MEMS. IEEE Microw. Mag. 10, 55–72 (2009)

    Article  Google Scholar 

  65. Ma, L.Y., et al.: A novel design of a low-voltage low-loss T-match RF-MEMS capacitive switch. In: Microsystem Technologies (2017)

    Article  Google Scholar 

  66. Ravirala, A.K., et al.: Design and performance analysis of uniform meander structured RF MEMS shunt switch along with perforations. J. Microsyst. Technol. 24(2), 901–908 (2017)

    Article  Google Scholar 

  67. Jayavardhani, K., et al.: Design and simulation of low actuation voltage shunt RF MEMS shunt capacitive switch with serpentine flexures & regular perforations. Int. J. Eng. Technol. 7, 4–8 (2018)

    Article  Google Scholar 

  68. Sharma, A., Shah, A., Bharti, R.: Design & simulation of low actuation voltage perforated shunt RF MEMS switch. Int. J. Eng. Tech. Res. (IJETR) 3(6) (2015)

    Google Scholar 

  69. Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L., Baishya, S.: Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect. Solid-State Electron. 137, 85–94 (2017)

    Article  Google Scholar 

  70. Ashby, M.F.: Material Selection in Mechanical Design, 2nd edn. Butterworth-Heinemann, Oxford, UK (1999)

    Google Scholar 

  71. Guisbiers, G., et al.: Material selection procedure for RF-MEMS. Microelectron. Eng. 87, 1792–1795 (2010)

    Article  Google Scholar 

  72. Lahiri, S.K., Saha, H., Kundu, A.: RF switch: an overview at a glance. In: 4th International Conference on Computer and Devices for Communication, Kolkata, Dec 2009

    Google Scholar 

  73. Callister, W.D.: Material Science and Engineering: An Introduction, 7th edn. Wiley, New York (2007)

    Google Scholar 

  74. Jlassi, B., Merdassi, A.: Design methodology of a high power RF MEMS switch for wireless communication. In: 4th Annual Caneus Fly by Workshop, Montreal QC, June 2011

    Google Scholar 

  75. Wang, G., et al.: A high performance tunable RF MEMS switch using barium strontium titanate (BST) dielectrics for reconfigurable antennas and phased arrays. In: IEEE Antennas and Wireless Propagation Letters, vol. 4, Aug 2005

    Google Scholar 

  76. Tan, S.G., et al.: Electromechanical modelling of high power RF-MEMS switches with ohmic contact. In: 2005 European Microwave Conference, Oct 2005

    Google Scholar 

  77. Renies, I., Pillans, B., Rebeiz, G.M.: Thin-film aluminium RF MEMS switched capacitor with stress tolerance and temperature stability. J. Microelectromech. Syst. 20, 193–202 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Karthick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthick, R., Babu, S.P.K. (2020). Review on Radio Frequency Micro Electro Mechanical Systems (RF-MEMS) Switch. In: Bindhu, V., Chen, J., Tavares, J. (eds) International Conference on Communication, Computing and Electronics Systems. Lecture Notes in Electrical Engineering, vol 637. Springer, Singapore. https://doi.org/10.1007/978-981-15-2612-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2612-1_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2611-4

  • Online ISBN: 978-981-15-2612-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics