Skip to main content

Dynamic Modeling and Vibration Control for a Nonlinear Three-Dimensional Flexible Manipulator

  • Chapter
  • First Online:
PDE Modeling and Boundary Control for Flexible Mechanical System

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 617 Accesses

Abstract

In the previous chapters, modeling and vibration control of the flexible mechanical systems are restricted to one dimensional space, and only transverse deformation is taken into account. However, flexible systems may move in a three-dimensional (3D) space in practical applications. The control performance will be affected if the coupling effects between motions in three directions are ignored. In spatial and industrial environment, flexible manipulators have been widely used due to their advantages such as light weight, fast motion and low energy consumption [3, 7]. For dynamic analysis, the flexible manipulator system is regarded as a distributed parameter system (DPS) which is mathematically represented by partial differential equations (PDEs) and ordinary differential equations (ODEs) [2, 5, 8], however, these works are only considered in one dimensional space. To improve accuracy and reliability analysis, modeling and control of the flexible manipulator system in a 3D space is necessary. Therefore, several works have been done in dynamics modeling and control design when the coupling effect are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Do KD, Pan J (2009) Boundary control of three-dimensional inextensible marine risers. J Sound Vib 327(3):299–321

    Article  Google Scholar 

  2. Ge SS, Lee TH, Zhu G (1998) Improving regulation of a single-link flexible manipulator with strain feedback. IEEE Trans Robot Autom 14(1):179–185

    Article  Google Scholar 

  3. He W, Ge SS (2015) Vibration control of a flexible beam with output constraint. IEEE Trans Ind Electron 62(8):5023–5030

    Article  Google Scholar 

  4. He W, Yang C, Zhu J, Liu J-K, He X (2017) Active vibration control of a nonlinear three-dimensional euler-bernoulli beam. J Vib Control 23(19):3196–3215

    Article  MathSciNet  Google Scholar 

  5. Liu Z, Liu J, He W (2017) Partial differential equation boundary control of a flexible manipulator with input saturation. Int J Syst Sci 48(1):53–62

    Article  MathSciNet  Google Scholar 

  6. Nguyen TL, Do KD, Pan J (2013) Boundary control of coupled nonlinear three dimensional marine risers. J Mar Sci Appl 12(1):72–88

    Article  Google Scholar 

  7. Wang H, Zhang R, Chen W, Liang X, Pfeifer R (2016) Shape detection algorithm for soft manipulator based on fiber bragg gratings. IEEE/ASME Trans Mechatron 21(6):2977–2982

    Article  Google Scholar 

  8. Zhang L, Liu J (2013) Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. Control Theory Appl IET 7(1):43–51

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Liu .

Appendices

Appendix 1: Proof of the Theorem

Consider the Lyapunov candidate function as

$$\begin{aligned} V={{V}_{1}}+{{V}_{2}}+{{V}_{3}}+{{V}_{4}}+{{V}_{o}}\end{aligned}$$
(9.43)

where

$$\begin{aligned} {{V}_{1}}&=\frac{1}{2}\beta {{k}_{2}}{{\tilde{\varvec{\omega }}}^{T}}{{\mathbf {I}}_{h}}\tilde{\varvec{\omega }}+\frac{1}{2}\beta {{k}_{2}}{{\tilde{\mathbf {q}}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}} +\frac{1}{2}\beta {{k}_{2}}\rho \int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] dx}\end{aligned}$$
(9.44)
$$\begin{aligned} {{V}_{2}}&=\frac{1}{2}\beta {{k}_{2}}EI\int _{\varOmega }{\left[ {{\left( {{y}_{xx}}\right) }^{2}}+{{\left( {{z}_{xx}}\right) }^{2}}\right] dx} +\frac{1}{2}\beta {{k}_{2}}T\int _{\varOmega }{\left[ {{\left( {{y}_{x}}\right) }^{2}}+{{\left( {{z}_{x}}\right) }^{2}}\right] dx}\end{aligned}$$
(9.45)
$$\begin{aligned} {{V}_{3}}&=\frac{1}{2}{{m}}\mathbf {u}_{0}^{T}{{\mathbf {u}}_{0}}\end{aligned}$$
(9.46)
$$\begin{aligned} {{V}_{4}}&=\alpha \rho \int _{\varOmega }{x{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \mathbf {{d}}_{x}\right] dx}+\alpha {{\tilde{\mathbf {q}}}^{T}}{{\mathbf {I}}_{h}}\tilde{\varvec{\omega }}+\alpha \rho \int _{\varOmega }{x{{\left[ {{\phi }_{1}}\frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ {{\phi }_{2}}\tilde{\mathbf {q}}\right] dx}\end{aligned}$$
(9.47)
$$\begin{aligned} {{V}_{o}}&=\frac{1}{2}\tilde{\mathbf {d}}_{\tau }^{T}\tilde{\mathbf {d}}_{\tau }^{{}}+\frac{1}{2}\tilde{\mathbf {d}}_{u}^{T}\tilde{\mathbf {d}}_{u}^{{}}\end{aligned}$$
(9.48)

where the estimate errors are \(\tilde{\mathbf {d}}_{\tau }^{{}}=\mathbf {d }_{\tau }^{{}}-\hat{\mathbf {d}}_{\tau }^{{}}\) and \(\tilde{\mathbf {d}}_{u}=\mathbf {{d}}_{u}-\hat{\mathbf {d}}_{u}\), and \(\tilde{\mathbf {r}}=\mathbf {r}\), \({d\tilde{\mathbf {r}}}/{dt}\;=\mathbf {{d}}_{t}+\tilde{\varvec{\omega }}\times \tilde{\mathbf {r}}\), and \({{\phi }_{1}}=\left[ \begin{matrix} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} -1 \end{matrix} \right] \), \({{\phi }_{2}}=\left[ \begin{matrix} 0 &{} 0 &{} 1\\ 0 &{} 1 &{} 0 \end{matrix} \right] \).

To motivate the followings, we first focus our attention on Eq. (9.47) and we can obtain

$$\begin{aligned} \left| {{V}_{4}}\right|&\le \alpha \rho L\int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] dx}+\frac{1}{2}\alpha \rho L\int _{\varOmega }{{{\left[ \phi \mathbf {{d}}_{x}\right] }^{T}}\left[ \phi \mathbf {{d}}_{x}\right] dx}\nonumber \\&+\frac{1}{2}\alpha \rho {{L}^{2}}{{\left[ {{\phi }_{2}}\tilde{\mathbf {q}}\right] }^{T}}\left[ {{\phi }_{2}}\tilde{\mathbf {q}}\right] +\frac{1}{2}\alpha {{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {I}}_{\mathbf {h}}}\tilde{\mathbf {q}}+\frac{1}{2}\alpha {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {I}}_{\mathbf {h}}}\tilde{\varvec{\omega }}\nonumber \\&\le {{\alpha }_{1}}\left( {{V}_{1}}+{{V}_{2}}\right) \end{aligned}$$
(9.49)

where \({{\alpha }_{1}}=\max \left[ \frac{2\alpha \rho L}{{{k}_{2}}\beta \rho },\frac{\alpha \rho L}{{{k}_{2}}\beta T},\frac{\alpha {{I}_{h1}}}{{{k}_{2}}\beta {{k}_{p1}}},\frac{\alpha \rho {{L}^{2}}+\alpha {{I}_{hi}}}{{{k}_{2}}\beta {{k}_{pi}}},\frac{\alpha }{{{k}_{2}}\beta }\right] ,i=2,3\).

Then, we have

$$\begin{aligned} -{{\alpha }_{1}}\left( {{V}_{1}}+{{V}_{2}} \right) \le {{V}_{4}}\le {{\alpha }_{1}}\left( {{V}_{1}}+{{V}_{2}} \right) \end{aligned}$$

Choosing \(\beta \), \({{k}_{2}}\) and \({{\mathbf {k}}_{p}}\) to satisfy the inequality \(0<{{\alpha }_{1}}<1\) yields \({{\alpha }_{2}}=1-{{\alpha }_{1}}>0\), \({{\alpha }_{3}}=1\text {+}{{\alpha }_{1}}>1\).

Then we further have

$$\begin{aligned} 0\le {{\alpha }_{2}}\left( {{V}_{1}}+{{V}_{2}} \right) \le {{V}_{1}}+{{V}_{2}}+{{V}_{4}}\le {{\alpha }_{3}}\left( {{V}_{1}}+{{V}_{2}} \right) \end{aligned}$$

Given the Lyapunov function in (9.43), we obtain

$$\begin{aligned} 0\le {{\alpha }_{2}}\left( {{V}_{1}}+{{V}_{2}}+{{V}_{3}}+{{V}_{o}}\right) \le V\le {{\alpha }_{3}}\left( {{V}_{1}}+{{V}_{2}}+{{V}_{3}}+{{V}_{o}}\right) \end{aligned}$$
(9.50)

Differentiating (9.43) with respect to time, we have

$$\begin{aligned} \dot{V}={{\dot{V}}_{1}}+{{\dot{V}}_{2}}+{{\dot{V}}_{3}}+{{\dot{V}}_{4}}+{{\dot{V}}_{o}}\end{aligned}$$
(9.51)

The term \({{\dot{V}}_{1}}\) is rewritten as

$$\begin{aligned} {{\dot{V}}_{1}}={{\dot{V}}_{11}}+{{\dot{V}}_{12}}+{{\dot{V}}_{13}}\end{aligned}$$
(9.52)

where

$$\begin{aligned} {{\dot{V}}_{11}}={{k}_{2}}\beta {{\tilde{\varvec{\omega }}}^{T}}{{\mathbf {I}}_{h}}{\dot{\tilde{\varvec{\omega }}}}+{{k}_{2}}\beta {{\tilde{\varvec{\omega }}}^{T}}\left( \tilde{\varvec{\omega }}\times \left( {{\mathbf {I}}_{h}}\tilde{\varvec{\omega }}\right) \right) \end{aligned}$$
(9.53)
$$\begin{aligned} {{\dot{V}}_{12}}={{k}_{2}}\beta \rho \int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{{{d}^{2}}\tilde{\mathbf {r}}}{d{{t}^{2}}}\right] dx}\end{aligned}$$
(9.54)
$$\begin{aligned} {{\dot{V}}_{13}}={{k}_{2}}\beta {{\tilde{\mathbf {q}}}^{T}}{{\mathbf {k}}_{p}}{\dot{\tilde{\mathbf{q}}}}\end{aligned}$$
(9.55)

Considering (9.15) and (9.30), we have

$$\begin{aligned} {{\dot{V}}_{11}}={{k}_{2}}\beta {{\tilde{\varvec{\omega }}}^{T}}\left( \varvec{\tau }+{{\mathbf {d}}_{\tau }}-M-N\right) \end{aligned}$$
(9.56)

and

$$\begin{aligned} {{{\dot{V}}}_{12}}&={{k}_{2}}\beta \rho \int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{{{d}^{2}}\tilde{\mathbf {r}}}{d{{t}^{2}}}\right] dx}\nonumber \\&={{k}_{2}}\beta \rho \int _{\varOmega }{{{\left[ \phi \mathbf {{d}}_{t}\right] }^{T}}\left[ \phi \left( \tilde{\varpi }+\mathbf {{d}}_{tt}\right) \right] dx}\nonumber +{{k}_{2}}\beta \rho \int _{\varOmega }{{{\left[ \phi \left( \tilde{\varvec{\omega }}\times \tilde{\mathbf {r}}\right) \right] }^{T}}\left[ \phi \left( \tilde{\varpi }+\mathbf {{d}}_{tt}\right) \right] dx}\nonumber \\&={{k}_{2}}\beta \rho \int _{\varOmega }{{{\left[ \phi \mathbf {{d}}_{t}\right] }^{T}}\left[ \phi \left( \tilde{\varpi }+\mathbf {{d}}_{tt}\right) \right] dx} +{{k}_{2}}\beta \rho \int _{\varOmega }{{{{\tilde{\varvec{\omega }}}}^{T}}\left( \tilde{\mathbf {r}}\times \left[ {{\phi }^{T}}\phi \left( \tilde{\varpi }+\mathbf {{d}}_{tt}\right) \right] \right) dx}\end{aligned}$$
(9.57)

Since

$$\begin{aligned} \rho \int _{\varOmega }{{{\left[ \phi \mathbf {{d}}_{t}\right] }^{T}}\left[ \phi \left( \tilde{\varpi }+\mathbf {{d}}_{tt}\right) \right] dx}&=-\int _{\varOmega }{{y}_{t}\left( EI{{y}_{xxxx}}-T{y}_{xx}\right) dx}\nonumber \\&-\int _{\varOmega }{{z}_{t}\left( EI{{z}_{xxxx}}-T{z}_{xx}\right) dx}\end{aligned}$$
(9.58)

and

$$\begin{aligned} \int _{\varOmega }{\rho \tilde{\mathbf {r}}\times \left[ {{\phi }^{T}}\phi \left( \tilde{\varpi }+\mathbf {{d}}_{tt}\right) \right] dx}&=T\tilde{\mathbf {r}}\times {{\mathbf {{d}}}_{x}(L,t)}-EI\tilde{\mathbf {r}}\times {{\mathbf {{d}}}_{xxx}(L,t)}+M+N \end{aligned}$$
(9.59)

we have

$$\begin{aligned} {{{\dot{V}}}_{12}}&={{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( M+N-EI\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}}_{xxx}(L,t)}+T\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}}_{x}(L,t)}\right) \nonumber \\&-{{k}_{2}}\beta \int _{\varOmega }{{z}_{t}\left( EI{{z}_{xxxx}}-T{z}_{xx}\right) dx} -{{k}_{2}}\beta \int _{\varOmega }{{y}_{t}\left( EI{{y}_{xxxx}}-T{y}_{xx}\right) dx}\end{aligned}$$
(9.60)

Substituting (9.28) into (9.55)

$$\begin{aligned} {{{\dot{V}}}_{13}}&={{k}_{2}}\beta {{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {k}}_{p}}{\dot{\tilde{\mathbf{q}}}}={{k}_{2}}\beta {{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {k}}_{p}}\mathbf {G}\tilde{\varvec{\omega }}\nonumber \\&={{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( {{\mathbf {G}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}}\right) \end{aligned}$$
(9.61)

Then, we have

$$\begin{aligned} {{{\dot{V}}}_{1}}&={{{\dot{V}}}_{11}}+{{{\dot{V}}}_{12}}+{{{\dot{V}}}_{13}}\nonumber \\&={{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( \varvec{\tau }+{{\mathbf {d}}_{\tau }}-EI\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}}_{xxx}(L,t)}+T\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}}_{x}(L,t)}+{{\mathbf {G}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}}\right) \nonumber \\&-{{k}_{2}}\beta \int _{\varOmega }{{y}_{t}\left( EI{{y}_{xxxx}}-T{y}_{xx}\right) dx} -{{k}_{2}}\beta \int _{\varOmega }{{z}_{t}\left( EI{{z}_{xxxx}}-T{z}_{xx}\right) dx}\end{aligned}$$
(9.62)

Considering the term \({{\dot{V}}_{2}}\), we have

$$\begin{aligned} {{\dot{V}}_{2}}={{k}_{2}}\beta EI\int _{\varOmega }{\left[ {y}_{xx}{{y}}_{xxt}+{z}_{xx}{{z}}_{xxt}\right] dx}+{{k}_{2}}\beta T\int _{\varOmega }{\left[ {y}_{x}{{y}}_{xt}+{z}_{x}{{z}}_{xt}\right] dx}\end{aligned}$$
(9.63)

Integrating (9.63) by parts with the boundary conditions, we obtain

$$\begin{aligned} {{{\dot{V}}}_{2}}&={{k}_{2}}\beta EI{y}_{xx}\left. { {{y}}_{xt}}\right| _{0}^{L}-{{k}_{2}}\beta EI{y}_{xxx}\left. {{y}_{t}}\right| _{0}^{L}+{{k}_{2}}\beta EI\int _{\varOmega }{{{y}_{xxxx}}{y}_{t}dx}\nonumber \\&+{{k}_{2}}\beta EI{z}_{xx}\left. {{{z}}_{x}}\right| _{0}^{L}-{{k}_{1}}\beta EI{z}_{xxx}\left. {{z}_{t}}\right| _{0}^{L}+{{k}_{2}}\beta EI\int _{\varOmega }{{{z}_{xxxx}}{z}_{t}dx}\nonumber \\&+{{k}_{2}}\beta T{y}_{x}\left. {{y}_{t}}\right| _{0}^{L}-{{k}_{2}}\beta T\int _{\varOmega }{{y}_{xx}{y}_{t}dx} +{{k}_{1}}\beta T{z}_{x}\left. {{z}_{t}}\right| _{0}^{L}-{{k}_{2}}\beta T\int _{\varOmega }{{z}_{xx}{z}_{t}dx}\nonumber \\&={{k}_{2}}\beta EI\int _{\varOmega }{{{y}_{xxxx}} {y}_{t}dx}+{{k}_{2}}\beta EI\int _{\varOmega }{{{z}_{xxxx}}{z}_{t}dx} -{{k}_{2}}\beta T\int _{\varOmega }{{y}_{xx}{y}_{t}dx} \nonumber \\&-{{k}_{2}}\beta T\int _{\varOmega }{{z}_{xx}{z}_{t}dx}-{{k}_{2}}\beta EI{{{{y}}}_{xxx}(L,t)}{{{{y}}}_{t}(L,t)}\nonumber \\&-{{k}_{2}}\beta EI{{{{z}}}_{xxx}(L,t)}{{{{z}}}_{t}(L,t)} +{{k}_{2}}\beta T{{{{y}}}_{x}(L,t)}{{{{y}}}_{t}(L,t)}+{{k}_{2}}\beta T{{{{z}_{x}}}(L,t)}{{{{z}}}_{t}(L,t)}\end{aligned}$$
(9.64)

Then we have

$$\begin{aligned} {{{\dot{V}}}_{1}}+{{{\dot{V}}}_{2}}&={{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( \varvec{\tau }+{{\mathbf {d}}_{\tau }}-EI\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}}_{xxx}(L,t)}+T\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}}_{x}(L,t)}\right) \nonumber \\&+{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( {{\mathbf {G}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}}\right) -{{k}_{2}}\beta EI{{{{y}}}_{xxx}(L,t)}{{{{y}_{t}}}(L,t)}-{{k}_{2}}\beta EI{{{{z}}}_{xxx}(L,t)}{{{{z}_{t}}}(L,t)}\nonumber \\&+{{k}_{2}}\beta T{{{{y}_{x}}}(L,t)}{{{{y}_{t}}}(L,t)}+{{k}_{2}}\beta T{{{{z}_{x}}}(L,t)}{{{{z}_{t}}}(L,t)}\nonumber \\&={{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( \varvec{\tau }+{{\mathbf {d}}_{\tau }}+{{\mathbf {G}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}}\right) -{{k}_{2}}\beta EI{{{\mathbf {{d}}_{t}}}(L,t)}^{T}{{{\mathbf {{d}}}_{xxx}}(L,t)}\nonumber \\&-{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( EI\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}_{xxx}}(L,t)}-T\tilde{\mathbf {r}}\times {{{\mathbf {{d}}}_{x}}(L,t)}\right) +{{k}_{2}}\beta T{{{\mathbf {{d}}}_{t}}(L,t)}^{T}{{{\mathbf {{d}}}_{x}}(L,t)}\end{aligned}$$
(9.65)

By calculating, we get

$$\begin{aligned}&{{k}_{2}}T\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( \tilde{\mathbf {r}}\times {{{\mathbf {{d}}}_{x}}(L,t)}\right) -{{k}_{2}}EI\beta {{{\tilde{\varvec{\omega }}}}^{T}}\left( \tilde{\mathbf {r}}\times {{{\mathbf {{d}}}_{xxx}}(L,t)}\right) \nonumber \\&-{{k}_{2}}\beta EI{{{\mathbf {{d}}}}_{t}^{T}}{{{\mathbf {{d}}}_{xxx}}(L,t)} +{{k}_{2}}\beta T{{{\mathbf {{d}}}}_{t}^{T}}{{{\mathbf {{d}}}_{x}}(L,t)}\nonumber \\&=-{{k}_{2}}EI\beta {{\left[ \tilde{\varvec{\omega }}\times \tilde{\mathbf {r}}\right] }^{T}}{{{\mathbf {{d}}}_{xxx}}(L,t)}+{{k}_{2}}T\beta {{\left[ \tilde{\varvec{\omega }}\times \tilde{\mathbf {r}}\right] }^{T}}{{{\mathbf {{d}}}_{x}}(L,t)}\nonumber \\&-{{k}_{2}}\beta EI{{{\mathbf {{d}}_{t}}}^{T}}{{{\mathbf {{d}}}_{xxx}}(L,t)} +{{k}_{2}}\beta T{{{\mathbf {{d}}_{t}}}^{T}}{{{\mathbf {{d}}}_{x}}(L,t)}\nonumber \\&=-{{k}_{2}}\beta EI{{\left[ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}{{{\mathbf {{d}}}_{xxx}}(L,t)}+{{k}_{2}}\beta T{{\left[ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}{{{\mathbf {{d}}}_{x}}(L,t)}\end{aligned}$$
(9.66)

Then (9.65) is rewritten as

$$\begin{aligned} {{\dot{V}}_{1}}+{{\dot{V}}_{2}}&={{k}_{2}}\beta {{\tilde{\varvec{\omega }}}^{T}}\left( \varvec{\tau }+\mathbf {d}_{\tau }+{{\mathbf {G}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}}\right) \nonumber \\&-{{k}_{2}}\beta EI{{\left[ \ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\ \right] }^{T}}\mathbf {d}_{xxx}{{(L,t)}}+{{k}_{2}}\beta T{{\left[ \ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\ \right] }^{T}}{\mathbf {d}_{x}}{{(L,t)}\ }\end{aligned}$$
(9.67)

Combining (9.36) and substituting (9.32) into (9.67) yields

$$\begin{aligned} {{{\dot{V}}}_{1}}+{{{\dot{V}}}_{2}}&=-{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {k}}_{d}}\tilde{\varvec{\omega }}-{{k}_{f}}{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {G}}^{T}}\mathbf {G}\tilde{\varvec{\omega }}\nonumber \\&-\frac{1}{2}\beta EIk_{1}^{2}{{\left[ {{{\mathbf {{d}}}_{x}}(L,t)}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{x}}(L,t)}-{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {k}}_{q}}\tilde{\mathbf {q}}\nonumber \\&-\frac{1}{2}\beta EI{{\left[ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}{{\phi }^{T}}\phi \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}+\frac{1}{2}\beta EI\mathbf {u}_{0}^{T}{{\mathbf {u}}_{0}}\nonumber \\&+\beta EI{{k}_{1}}{{k}_{2}} {{\left[ {{{\mathbf {{d}}}_{x}}(L,t)}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{xxx}}(L,t)}+{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{{\tilde{\mathbf {d}}}}_{\tau }}\nonumber \\&+\left( {{k}_{2}}\beta T-\beta EI{{k}_{1}}\right) {{\left[ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{x}}(L,t)}\nonumber \\&-\frac{1}{2}\beta EIk_{2}^{2}{{\left[ {{{\mathbf {{d}}}_{xxx}}(L,t)}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{xxx}}(L,t)}\end{aligned}$$
(9.68)

According to Lemma 2.4, we have

$$\begin{aligned}&{{{\dot{V}}}_{1}}+{{{\dot{V}}}_{2}}\le -{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {k}}_{d}}\tilde{\varvec{\omega }}-{{k}_{f}}{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {G}}^{T}}\mathbf {G}\tilde{\varvec{\omega }}\nonumber \\&+\frac{1}{2}\beta EI\mathbf {u}_{0}^{T}{{\mathbf {u}}_{0}}+\frac{1}{2{{\sigma }_{3}}}{{k}_{2}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}\tilde{\varvec{\omega }}+\frac{1}{2}{{\sigma }_{3}}{{k}_{2}}\beta {{{\tilde{\mathbf {d}}}}_{\tau }}^{T}{{{\tilde{\mathbf {d}}}}_{\tau }}\nonumber \\&+\frac{1}{2{{\sigma }_{2}}}\sqrt{{{k}_{2}}}\beta {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {k}}_{q}}\tilde{\varvec{\omega }}+\frac{1}{2}{{\sigma }_{2}}\sqrt{{{k}_{2}}}\beta {{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {k}}_{q}}\tilde{\mathbf {q}}\nonumber \\&-\left( \frac{1}{2}\beta EI-\frac{1}{2{{\sigma }_{0}}}\left| {{k}_{2}}\beta T-{{k}_{1}}\beta EI\right| \right) {{\left[ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}{{\phi }^{T}}\phi \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\nonumber \\ {}&-\left( \frac{1}{2}\beta EIk_{1}^{2}-\frac{1}{2}{{\sigma }_{0}}\left| {{k}_{2}}\beta T-{{k}_{1}}\beta EI\right| \right) {{\left[ {{{\mathbf {{d}}}_{x}}(L,t)}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{x}}(L,t)}\nonumber \\ {}&-\frac{1}{2}\beta EIk_{2}^{2}{{\left[ {{{\mathbf {{d}}}_{xxx}}(L,t)}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{xxx}}(L,t)}+\beta EI{{k}_{1}}{{k}_{2}}{{\left[ {{{\mathbf {{d}}}_{x}}(L,t)}\right] }^{T}}{{\phi }^{T}}\phi {{{\mathbf {{d}}}_{xxx}}(L,t)}\end{aligned}$$
(9.69)

Since

$$\begin{aligned}&\frac{d{{\mathbf {u}}_{0}}}{dt}=\phi \left[ 2\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{t}}(L,t)}+{\dot{\tilde{\varvec{\omega }}}}\times {{{\tilde{\mathbf {r}}}}(L,t)}\mathbf {+} \tilde{\varvec{\omega }}\times \left( \tilde{\varvec{\omega }}\times {{{\tilde{\mathbf {r}}}}(L,t)}\right) + {{{\mathbf {{d}}}_{tt}}(L,t)}\right] \nonumber \\&+\phi \left[ {{k}_{1}} {{{\mathbf {{{d}}}}_{xt}}(L,t)}+{{k}_{1}}\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{x}}(L,t)}-{{k}_{2}} {{{\mathbf {{{d}}}}_{xxxt}}(L,t)}-{{k}_{2}}\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{xxx}}(L,t)}\right] \nonumber \\&=\phi \left[ {{{\tilde{\varpi }}}(L,t)}+ {{{\mathbf {{d}}}_{tt}}(L,t)}+{{k}_{1}} {{{\mathbf {{{d}}}}_{xt}}(L,t)}+{{k}_{1}}\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{x}}(L,t)}\right] \nonumber \\&-\phi \left[ {{k}_{2}} {{{\mathbf {{{d}}}}_{xxxt}}(L,t)}+{{k}_{2}}\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{xxx}}(L,t)}\right] \end{aligned}$$
(9.70)

we obtain

$$\begin{aligned} {{{\dot{V}}}_{3}}&={{m}}\mathbf {u}_{0}^{T}\frac{d{{\mathbf {u}}_{0}}}{dt} =\mathbf {u}_{0}^{T}\left( \mathbf {u}+{{\mathbf {d}}_{u}}+EI\phi {{{\mathbf {{d}}}_{xxx}}(L,t)}-T\phi {{{\mathbf {{d}}}_{x}}(L,t)}\right) \nonumber \\&+{{m}}\mathbf {u}_{0}^{T}\phi \left( {{k}_{1}} {{{\mathbf {{d}}}_{xt}}(L,t)}+{{k}_{1}}\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{x}}(L,t)}-{{k}_{2}} {{{\mathbf {{d}}}_{xxxt}}(L,t)}-{{k}_{2}}\tilde{\varvec{\omega }}\times {{{\mathbf {{d}}}_{xxx}}(L,t)}\right) \end{aligned}$$
(9.71)

Substituting (9.33) into (9.71), we have

$$\begin{aligned} {{{\dot{V}}}_{3}}&=-\mathbf {u}_{0}^{T}{{\mathbf {k}}_{u}}{{\mathbf {u}}_{0}}+\mathbf {u}_{0}^{T}{{{\tilde{\mathbf {d}}}}_{u}}\nonumber \\&\le -\mathbf {u}_{0}^{T}{{\mathbf {k}}_{u}}{{\mathbf {u}}_{0}}+\frac{1}{2}{{\sigma }_{6}}\mathbf {u}_{0}^{T}{{\mathbf {u}}_{0}}+\frac{1}{2{{\sigma }_{6}}}\tilde{\mathbf {d}}_{u}^{T}{{{\tilde{\mathbf {d}}}}_{u}}\end{aligned}$$
(9.72)

To go on, the term \({{\dot{V}}_{4}}\) can be written as

$$\begin{aligned} {{\dot{V}}_{4}}={{B}_{1}}+{{B}_{2}}+{{B}_{3}}+{{B}_{4}}+{{B}_{5}}+{{B}_{6}}\end{aligned}$$
(9.73)

where

$$\begin{aligned} {{B}_{1}}=\alpha \rho \int _{\varOmega }{x{{\phi }^{T}}{{\left[ \tilde{\varpi }+\mathbf {{d}}_{tt}\right] }^{T}}\left[ \phi \mathbf {{d}}_{x}\right] dx}\end{aligned}$$
(9.74)
$$\begin{aligned} {{B}_{2}}=\alpha \rho \int _{\varOmega }{x{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{d\mathbf {{d}}_{x}}{dt}\right] dx}\end{aligned}$$
(9.75)
$$\begin{aligned} {{B}_{3}}=\alpha \rho \int _{\varOmega }{x\phi _{1}^{T}{{\left[ \tilde{\varpi }\text {+} \mathbf {{d}}_{tt}\right] }^{T}}\left[ {{\phi }_{2}}\tilde{\mathbf {q}}\right] dx}\end{aligned}$$
(9.76)
$$\begin{aligned} {{B}_{4}}=\alpha \rho \int _{\varOmega }{x{{\left[ {{\phi }_{1}}\frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ {{\phi }_{2}} {\dot{\tilde{\mathbf{q}}}}\right] dx}\end{aligned}$$
(9.77)
$$\begin{aligned} {{B}_{5}}=\alpha {{\tilde{\varvec{\omega }}}^{T}}{{\mathbf {I}}_{\mathbf {h}}}{\dot{\tilde{\mathbf{q}}}}\end{aligned}$$
(9.78)
$$\begin{aligned} {{B}_{6}}=\alpha {{\tilde{\mathbf {q}}}^{T}}\left( {{\mathbf {I}}_{\mathbf {h}}}{\dot{\tilde{\varvec{\omega }}}}+\tilde{\varvec{\omega }}\times \left( {{\mathbf {I}}_{\mathbf {h}}}\tilde{\varvec{\omega }}\right) \right) \end{aligned}$$
(9.79)

Using boundary conditions and integrating by parts, we obtain

$$\begin{aligned} {{{\dot{V}}}_{4}}&={{B}_{1}}+{{B}_{2}}+{{B}_{3}}+{{B}_{4}}+{{B}_{5}}+{{B}_{6}}\nonumber \\&\le -\alpha EIL{{{{y}_{x}}}(L,t)} {{{{y}_{xxx}}}(L,t)}-\alpha EIL {{{{z}_{x}}}(L,t)} {{{{z}_{xxx}}}(L,t)}+\frac{1}{2}\alpha TL{{\left( {{{{z}_{x}}}(L,t)}\right) }^{2}}+\frac{\alpha }{2{{\sigma }_{5}}}EIL{{\left( {{{{y}_{xxx}}}(L,t)}\right) }^{2}}\nonumber \\ {}&+\frac{\alpha }{2{{\sigma }_{5}}}EIL{{\left( {{{{z}_{xxx}}}(L,t)}\right) }^{2}} +\frac{\alpha }{2{{\sigma }_{7}}}TL{{\left( {{{{y}_{x}}}(L,t)}\right) }^{2}}+\frac{1}{2}\alpha TL{{\left( {{{{y}_{x}}}(L,t)}\right) }^{2}}\nonumber \\ {}&+\frac{\alpha }{2{{\sigma }_{7}}}TL{{\left( {{{{z}_{x}}}(L,t)}\right) }^{2}} -\frac{3}{2}\alpha EI\int _{\varOmega }{{{\left( {{y}_{xx}}\right) }^{2}}dx}-\frac{3}{2}\alpha EI\int _{\varOmega }{{{\left( {{z}_{xx}}\right) }^{2}}dx}\nonumber \\ {}&-\frac{1}{2}\alpha T\int _{\varOmega }{{{\left( {{y}_{x}}\right) }^{2}}dx}-\frac{1}{2}\alpha T\int _{\varOmega }{{{\left( {{z}_{x}}\right) }^{2}}dx}-\left( \frac{1}{2}\alpha \rho -{{\sigma }_{4}}\frac{\alpha \rho L}{2}\right) \int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] dx}\nonumber \\&+\frac{\alpha }{2}{{\sigma }_{8}}\rho L\int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] dx} +\frac{1}{2}\alpha L{{\left[ \phi \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}\left[ \phi \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] +\frac{1}{2}{{\sigma }_{9}}\alpha {{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {I}}_{\mathbf {h}}}\tilde{\varvec{\omega }}\nonumber \\&+\frac{\alpha }{2{{\sigma }_{10}}}{{{\tilde{\varvec{\omega }}}}^{T}}{{\mathbf {k}}_{d}}\tilde{\varvec{\omega }}+\frac{\alpha \rho }{2{{\sigma }_{4}}}{{L}^{2}}\left( \tilde{\omega }_{2}^{2}+\tilde{\omega }_{3}^{2}\right) \mathbf {+}\frac{\alpha }{2{{\sigma }_{11}}}{{{\tilde{\mathbf {q}}}}^{T}}\tilde{\mathbf {q}} -\alpha {{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {k}}_{q}}\tilde{\mathbf {q}}-\frac{1}{2}\alpha \tilde{\eta }{{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {k}}_{p}}\tilde{\mathbf {q}+}\frac{\alpha }{2}{{\sigma }_{10}}{{{\tilde{\mathbf {q}}}}^{T}}{{\mathbf {k}}_{d}}\tilde{\mathbf {q}}\nonumber \\&+\frac{\alpha }{4}{{k}_{f}}{{{\tilde{\eta }}}^{2}}{{{\tilde{\mathbf {q}}}}^{T}}\tilde{\mathbf {q}+}\frac{\alpha }{2}{{\sigma }_{5}}EIL\tilde{q}_{3}^{2}+\frac{\alpha }{2}{{\sigma }_{7}}TL\tilde{q}_{3}^{2} +\frac{\alpha }{2}{{\sigma }_{7}}TL\tilde{q}_{2}^{2}+\frac{\alpha }{2}{{\sigma }_{5}}EIL\tilde{q}_{2}^{2}\mathbf {+}\frac{\alpha }{2}{{k}_{f}}{{\left[ \mathbf {G}\tilde{\varvec{\omega }}\right] }^{T}}\mathbf {G}\tilde{\varvec{\omega }}\nonumber \\&+\frac{1}{2{{\sigma }_{9}}}\alpha {{\left[ G\tilde{\varvec{\omega }}\right] }^{T}}{{\mathbf {I}}_{\mathbf {h}}}\left[ G\tilde{\varvec{\omega }}\right] \mathbf {+}\frac{\alpha }{2}{{\sigma }_{11}}{{{\tilde{\mathbf {d}}}}_{\tau }}^{T}{{{\tilde{\mathbf {d}}}}_{\tau }} +\frac{\alpha }{2{{\sigma }_{8}}}\rho L\left( {{\left[ G\tilde{\varvec{\omega }}\right] }^{T}}\phi _{2}^{T}{{\phi }_{2}}\left[ G\tilde{\varvec{\omega }}\right] \right) \end{aligned}$$
(9.80)

The last term of (9.51) is

$$\begin{aligned} {{{\dot{V}}}_{o}}&=\tilde{\mathbf {d}}_{\tau }^{T}{\dot{\tilde{\mathbf{d}}}}_{\tau }^{{}}+\tilde{\mathbf {d}}_{u}^{T}{\dot{\tilde{\mathbf{d}}}}_{u}^{{}} =-\tilde{\mathbf {d}}_{\tau }^{T}{\dot{\hat{\mathbf {d}}}}_{\tau }^{{}}-\tilde{\mathbf {d}}_{u}^{T}{\dot{\hat{\mathbf {d}}}}_{u}^{{}} +\tilde{\mathbf {d}}_{\tau }^{T}\dot{\mathbf {{d}}}_{\tau }^{{}}+\tilde{\mathbf {d}}_{u}^{T}{\dot{\mathbf {d}}}_{u}^{{}} \nonumber \\&\le -\tilde{\mathbf {d}}_{\tau }^{T}\left( {{{\dot{\mathbf {z}}}}_{\mathbf {1}}}+{{K}_{1}}\left( {{\mathbf {I}}_{\mathbf {h}}}\dot{\varvec{\omega }}+\omega \times \left( {{\mathbf {I}}_{\mathbf {h}}}\varvec{\omega }\right) \right) \right) -\tilde{\mathbf {d}}_{u}^{T}\left( {{{\dot{\mathbf {z}}}}_{\mathbf {2}}}+{{K}_{2}}{{m}}\phi \left[ \frac{{{d}^{2}}{{\mathbf {r}}_{L}}}{d{{t}^{2}}}\right] \right) +{{\sigma }_{12}}\tilde{\mathbf {d }}_{\tau }^{T}\tilde{\mathbf {d }}_{\tau }^{{}}\nonumber \\&+{{\sigma }_{13}}\tilde{\mathbf {d}}_{u}^{T}\tilde{\mathbf {d}}_{u}^{{}}+\frac{1}{{{\sigma }_{12}}}\dot{\mathbf {d }}_{\tau }^{T}\dot{\mathbf {d }}_{\tau }^{{}}+\frac{1}{{{\sigma }_{13}}}\dot{\mathbf {d}}_{u}^{T}\dot{\mathbf {d}}_{u}^{{}}\nonumber \\&=-\tilde{\mathbf {d}}_{\tau }^{T}\left( {{K}_{1}}-{{\sigma }_{12}}{{\mathbf {I}}_{3}} \right) \tilde{\mathbf {d}}_{\tau }^{{}}-\tilde{\mathbf {d}}_{u}^{T}\left( {{K}_{2}}-{{\sigma }_{13}}{{\mathbf {I}}_{3}} \right) \tilde{\mathbf {d}}_{u}^{{}} +\frac{1}{{{\sigma }_{12}}}\dot{\mathbf {d }}_{\tau }^{T}\dot{\mathbf {d }}_{\tau }^{{}}+\frac{1}{{{\sigma }_{13}}}\dot{\mathbf {d}}_{u}^{T}\dot{\mathbf {d}}_{u}^{{}} \end{aligned}$$
(9.81)

Applying (9.69), (9.72), (9.80) and (9.81), we have

$$\begin{aligned} \dot{V}&\le -\left( \frac{1}{2}\beta EIk_{2}^{2}-\frac{\alpha }{2{{\sigma }_{5}}}EIL-\frac{1}{2{{\sigma }_{1}}}\left| {{k}_{1}}{{k}_{2}}\beta EI-\alpha EIL\right| \right) {{\left[ \phi {{{\mathbf {{d}}}_{xxx}}(L,t)}\right] }^{T}}\left[ \phi {{{\mathbf {{d}}}_{xxx}}(L,t)}\right] \nonumber \\&-\left( \frac{1}{2}\beta EIk_{1}^{2}+\frac{\alpha EI}{L}-\frac{1}{2}\alpha TL-\frac{1}{2}{{\sigma }_{0}}\left| {{k}_{2}}\beta T-{{k}_{1}}\beta EI\right| -\frac{\alpha }{2{{\sigma }_{7}}}TL\right) {{\left[ \phi {{{\mathbf {{d}}}_{x}}(L,t)}\right] }^{T}}\left[ \phi {{{\mathbf {{d}}}_{x}}(L,t)}\right] \nonumber \\&-\left( -\frac{1}{2}{{\sigma }_{1}}\left| {{k}_{1}}{{k}_{2}}\beta EI-\alpha EIL\right| \right) {{\left[ \phi {{{\mathbf {{d}}}_{x}}(L,t)}\right] }^{T}}\left[ \phi {{{\mathbf {{d}}}_{x}}(L,t)}\right] -\frac{1}{2}\alpha EI\int _{\varOmega }{{{\left( {{y}_{xx}}\right) }^{2}}dx}-\frac{1}{2}\alpha EI\int _{\varOmega }{{{\left( {{z}_{xx}}\right) }^{2}}dx}\nonumber \\&-\frac{1}{2}\alpha T\int _{\varOmega }{{{\left( {{y}_{x}}\right) }^{2}}dx}-\frac{1}{2}\alpha \rho \left( 1-{{\sigma }_{4}}L-{{\sigma }_{8}}L\right) \int _{\varOmega }{{{\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] }^{T}}\left[ \phi \frac{d\tilde{\mathbf {r}}}{dt}\right] dx}\nonumber \\&-\frac{1}{2}\left( \beta EI-\alpha L-\frac{1}{2{{\sigma }_{0}}}\left| {{k}_{2}}\beta T-{{k}_{1}}\beta EI\right| \right) {{\left[ \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}\right] }^{T}}{{\phi }^{T}}\phi \frac{d{{{\tilde{\mathbf {r}}}}(L,t)}}{dt}-\frac{1}{2}\alpha T\int _{\varOmega }{{{\left( {{z}_{x}}\right) }^{2}}dx}\nonumber \\&-{{{\tilde{\mathbf {q}}}}^{T}}\left( \alpha {{\mathbf {k}}_{q}}+\frac{1}{2}\alpha \tilde{\eta }{{\mathbf {k}}_{p}}-\frac{\alpha }{2}{{\sigma }_{10}}{{\mathbf {k}}_{d}}\right) \tilde{\mathbf {q}}+{{{\tilde{\mathbf {q}}}}^{T}}\left( \frac{\alpha }{4}{{k}_{f}}{{{\tilde{\eta }}}^{2}}{{\mathbf {I}}_{3}}+\frac{1}{2}{{\sigma }_{2}}\sqrt{{{k}_{2}}}\beta {{\mathbf {k}}_{q}}\mathbf {+}\frac{\alpha }{2{{\sigma }_{11}}}{{\mathbf {I}}_{3}}\right) \tilde{\mathbf {q}}\nonumber \\&+{{{\tilde{\mathbf {q}}}}^{T}}\left( \frac{\alpha }{2}{{\sigma }_{5}}EIL\phi ^{T}\phi +\frac{\alpha }{2}{{\sigma }_{7}}TL\phi ^{T}\phi \right) \tilde{\mathbf {q}}-\frac{1}{2}{{{\tilde{\varvec{\omega }}}}^{T}}\left( 2{{k}_{2}}\beta {{\mathbf {k}}_{d}}+\frac{1}{{{\sigma }_{3}}}{{k}_{2}}\beta {{\mathbf {I}}_{3}}-\frac{\alpha \rho }{{{\sigma }_{4}}}{{L}^{2}}\phi ^{T}\phi \right) \tilde{\varvec{\omega }}\nonumber \\&+\frac{1}{2}{{{\tilde{\varvec{\omega }}}}^{T}}\left( \frac{\alpha }{{{\sigma }_{10}}}{{\mathbf {k}}_{d}}+2{{\sigma }_{9}}\alpha {{\mathbf {I}}_{\mathbf {h}}}+\frac{1}{{{\sigma }_{2}}}\sqrt{{{k}_{2}}}\beta {{\mathbf {k}}_{q}}\right) \tilde{\varvec{\omega }}-{{\left[ G\tilde{\varvec{\omega }}\right] }^{T}}\left( {{k}_{2}}{{k}_{f}}\beta {{\mathbf {I}}_{3}}-\frac{\alpha }{2{{\sigma }_{8}}}\rho L\phi _{2}^{T}{{\phi }_{2}}\right) \left[ G\tilde{\varvec{\omega }}\right] \nonumber \\&-{{\left[ G\tilde{\varvec{\omega }}\right] }^{T}}\left( -\frac{1}{2{{\sigma }_{9}}}\alpha {{\mathbf {I}}_{\mathbf {h}}}-\frac{\alpha }{2}{{k}_{f}}{{\mathbf {I}}_{3}}\right) \left[ G\tilde{\varvec{\omega }}\right] -\mathbf {u}_{0}^{T}\left( {{\mathbf {k}}_{u}}-\frac{1}{2}\beta EI{{\mathbf {I}}_{2}}-\frac{1}{2}{{\sigma }_{6}}{{\mathbf {I}}_{2}}\right) {{\mathbf {u}}_{0}}\nonumber \\&-\tilde{\mathbf {d}}_{\tau }^{T}\left( {{K}_{1}}-\frac{\alpha }{2}{{\sigma }_{11}}{{\mathbf {I}}_{3}}-\frac{1}{2}{{\sigma }_{3}}{{k}_{2}}\beta {{\mathbf {I}}_{3}}-{{\sigma }_{12}}{{\mathbf {I}}_{3}}\right) \tilde{\mathbf {d}}_{\tau }-\tilde{\mathbf {d}}_{u}^{T}\left( {{K}_{2}}-\frac{1}{2{{\sigma }_{6}}}{{\mathbf {I}}_{2}}-{{\sigma }_{13}}{{\mathbf {I}}_{2}}\right) \tilde{\mathbf {d}}_{u}+\varepsilon \end{aligned}$$
(9.82)

where \(\varepsilon =\frac{1}{{{\sigma }_{12}}}(\bar{d}_{\tau x}^{2}+\bar{d}_{\tau y}^{2}+\bar{d}_{\tau z}^{2})\text {+}\frac{1}{{{\sigma }_{13}}}(\bar{d}_{uy}^{2}+\bar{d}_{uz}^{2})\).

We design parameters \({{k}_{1}}\) \({{k}_{2}}\), \({{\mathbf {k}}_{p}}\), \({{\mathbf {k}}_{d}}\), \({{\mathbf {k}}_{q}}\), \({{\mathbf {k}}_{u}}\), \({{K}_{1}}\), \({{K}_{2}}\), \(\alpha \), \(\beta \) and \({{\sigma }_{n}}\left( n=0...13\right) \) to satisfy the following conditions:

$$\begin{aligned}&\beta EIk_{1}^{2}+\frac{2\alpha EI}{L}-{{\sigma }_{0}}\left| {{k}_{2}}\beta T-{{k}_{1}}\beta EI\right| -\alpha TL\nonumber \\&-\frac{\alpha }{{{\sigma }_{7}}}TL-{{\sigma }_{1}}\left| {{k}_{1}}{{k}_{2}}\beta EI-\alpha EIL\right| \ge 0 \end{aligned}$$
(9.83)
$$\begin{aligned} \beta EIk_{2}^{2}-\frac{\alpha }{{{\sigma }_{5}}}EIL-\frac{1}{{{\sigma }_{1}}}\left| {{k}_{1}}{{k}_{2}}\beta EI-\alpha EIL\right| \ge 0 \end{aligned}$$
(9.84)
$$\begin{aligned} \beta EI-\frac{1}{{{\sigma }_{0}}}\left| {{k}_{2}}\beta T-{{k}_{1}}\beta EI\right| -\alpha L\ge 0 \end{aligned}$$
(9.85)
$$\begin{aligned} {{k}_{2}}{{k}_{f}}\beta -\frac{1}{2{{\sigma }_{9}}}\alpha {{I}_{h1}}-\frac{\alpha }{2}{{k}_{f}}\ge 0 \end{aligned}$$
(9.86)
$$\begin{aligned} {{k}_{2}}{{k}_{f}}\beta -\frac{\alpha }{2{{\sigma }_{8}}}\rho L-\frac{1}{2{{\sigma }_{9}}}\alpha {{I}_{hi}}-\frac{\alpha }{2}{{k}_{f}}\ge 0\end{aligned}$$
(9.87)
$$\begin{aligned}&{{\delta }_{1}}=1-{{\sigma }_{8}}L-{{\sigma }_{4}}L>0\end{aligned}$$
(9.88)
$$\begin{aligned}&{{\delta }_{2}}=2\alpha {{k}_{q1}}+\alpha {{{\tilde{\eta }}}_{0}}{{k}_{p1}}-\alpha {{\sigma }_{10}}{{k}_{d1}}-\frac{1}{2}\alpha {{k}_{f}}{{{\tilde{\eta }}}^{2}}\nonumber \\&\text { }-{{\sigma }_{2}}\sqrt{{{k}_{2}}}\beta {{k}_{q1}}-\frac{\alpha }{2{{\sigma }_{11}}}>0\end{aligned}$$
(9.89)
$$\begin{aligned}&{{\delta }_{i+1}}=2\alpha {{k}_{qi}}+\alpha {{{\tilde{\eta }}}_{0}}{{k}_{pi}}-\alpha {{\sigma }_{10}}{{k}_{di}}-\frac{1}{2}\alpha {{k}_{f}}{{{\tilde{\eta }}}^{2}}\nonumber \\&\text { }-{{\sigma }_{2}}\sqrt{{{k}_{2}}}\beta {{k}_{qi}}-\alpha {{\sigma }_{7}}TL-\alpha {{\sigma }_{5}}EIL-\frac{\alpha }{2{{\sigma }_{11}}}>0\end{aligned}$$
(9.90)
$$\begin{aligned}&{{\delta }_{5}}=2{{k}_{2}}\beta {{k}_{d1}}+\frac{1}{{{\sigma }_{3}}}{{k}_{2}}\beta -\frac{\alpha }{{{\sigma }_{10}}}{{k}_{d1}}\nonumber \\&-2{{\sigma }_{9}}\alpha {{I}_{h1}}-\frac{1}{{{\sigma }_{2}}}\sqrt{{{k}_{2}}}\beta {{k}_{q1}}>0\end{aligned}$$
(9.91)
$$\begin{aligned}&{{\delta }_{i+4}}=2{{k}_{2}}\beta {{k}_{di}}+\frac{1}{{{\sigma }_{3}}}{{k}_{2}}\beta -\frac{\alpha \rho }{{{\sigma }_{4}}}{{L}^{2}}-\frac{\alpha }{{{\sigma }_{10}}}{{k}_{di}}\nonumber \\&\text { }-2{{\sigma }_{9}}\alpha {{I}_{hi}}-\frac{1}{{{\sigma }_{2}}}\sqrt{{{k}_{2}}}\beta {{k}_{qi}}>0\end{aligned}$$
(9.92)
$$\begin{aligned}&{{\delta }_{j+7}}={{k}_{uj}}-\frac{1}{2}\beta T-\frac{1}{2}{{\sigma }_{6}}>0\end{aligned}$$
(9.93)
$$\begin{aligned}&{{\delta }_{j+9}}={{K}_{2j}}-\frac{1}{2{{\sigma }_{6}}}-{{\sigma }_{13}}>0\end{aligned}$$
(9.94)
$$\begin{aligned}&{{\delta }_{m+11}}={{K}_{1m}}-\frac{\alpha }{2}{{\sigma }_{11}}-\frac{1}{2}{{\sigma }_{3}}{{k}_{2}}\beta -{{\sigma }_{12}}>0 \end{aligned}$$
(9.95)

where \(m=1,2,3\), \(j=1,2,\) \(i=2,3\).

We can obtain

$$\begin{aligned} \dot{V}\le -{{\lambda }_{1}}\left( {{V}_{1}}+{{V}_{2}}+{{V}_{3}}+{{V}_{o}}\right) + \varepsilon \end{aligned}$$
(9.96)

where \({{\lambda }_{1}}=\min \left( \frac{\alpha {{\delta }_{1}}}{\beta {{k}_{1}}},\frac{2{{\delta }_{i+1}}}{\beta {{k}_{1}}{{k}_{pi}}},\frac{{{\delta }_{i+4}}}{\beta {{k}_{1}}{{I}_{hi}}},\frac{\alpha }{\beta {{k}_{1}}},\frac{2{{\delta }_{j+7}}}{{{m}}},2{{\delta }_{j+9}},2{{\delta }_{m+11}}\right) \)

Combining (9.50) and (9.96), we have

$$\begin{aligned} \dot{V}\le -\lambda V + \varepsilon \end{aligned}$$
(9.97)

where \(\lambda ={{{\lambda }_{1}}}/{{{\alpha }_{3}}}>0\).

Then, multiply Eq. (9.97), by \({{e}^{\lambda t}}\), we obtain

$$\begin{aligned} \frac{d}{dt}\left( \left( V(t){{e}^{\lambda t}} \right) \right) \le \varepsilon {{e}^{\lambda t}}\end{aligned}$$
(9.98)

Integration of the above inequalities, we obtain

$$\begin{aligned} V(t)\le V(0){{e}^{-\lambda t}}+\frac{\varepsilon }{\lambda }\left( 1-{{e}^{-\lambda t}} \right) \le V(0){{e}^{-\lambda t}}+\frac{\varepsilon }{\lambda } \end{aligned}$$
(9.99)

We can conclude that V(t) is bounded from (9.99).

According to Lemma 2.5, we have

$$\begin{aligned} \frac{\beta {{k}_{2}}T}{2L}{{y}^{2}}(x,t)\le \frac{\beta {{k}_{2}}T}{2}\int _{0}^{L}{{{({y}_{x})}^{2}}dx}\le {{V}_{2}}(t)\le \frac{V(t)}{{{\alpha }_{2}}} \end{aligned}$$
(9.100)
$$\begin{aligned} \frac{\beta {{k}_{2}}T}{2L}{{z}^{2}}(x,t)\le \frac{\beta {{k}_{2}}T}{2}\int _{0}^{L}{{{({z}_{x})}^{2}}dx}\le {{V}_{2}}(t)\le \frac{V(t)}{{{\alpha }_{2}}} \end{aligned}$$
(9.101)

Therefore we obtain y(x, t) and z(x, t) are uniformly bounded as follows

$$\begin{aligned} \left| y(x,t) \right| \le \sqrt{\frac{2L}{\beta {{k}_{2}}T{{\alpha }_{2}}}V(t)}\le \sqrt{\frac{2L}{\beta {{k}_{2}}T{{\alpha }_{2}}}\left( V(0){{e}^{-\lambda t}}+\frac{\varepsilon }{\lambda } \right) } \end{aligned}$$
(9.102)
$$\begin{aligned} \left| z(x,t) \right| \le \sqrt{\frac{2L}{\beta {{k}_{2}}T{{\alpha }_{2}}}V(t)}\le \sqrt{\frac{2L}{\beta {{k}_{2}}T{{\alpha }_{2}}}\left( V(0){{e}^{-\lambda t}}+\frac{\varepsilon }{\lambda } \right) } \end{aligned}$$
(9.103)

\(\forall (x,t)\in [0,L]\times [0,\infty )\).

Similarly, we have

$$\begin{aligned} \left| {{{\tilde{q}}}_{i}} \right| \le \sqrt{\frac{2V(t)}{\beta {{k}_{2}}{{\alpha }_{2}}{{\lambda }_{\min }}({{\mathbf {k}}_{p}})}}\le \sqrt{\frac{2}{\beta {{k}_{2}}{{\alpha }_{2}}{{\lambda }_{\min }}({{\mathbf {k}}_{p}})}\left( V(0){{e}^{-\lambda t}}+\frac{\varepsilon }{\lambda } \right) }\text { }\left( i=1,2,3 \right) \end{aligned}$$
(9.104)

It follows that,

$$\begin{aligned} \underset{t\rightarrow \infty }{\mathop {\lim }}\,\left| y(x,t) \right| \le \sqrt{\frac{2L\varepsilon }{\beta {{k}_{2}}T{{\alpha }_{2}}\lambda }} \end{aligned}$$
(9.105)
$$\begin{aligned} \underset{t\rightarrow \infty }{\mathop {\lim }}\,\left| z(x,t) \right| \le \sqrt{\frac{2L\varepsilon }{\beta {{k}_{2}}T{{\alpha }_{2}}\lambda }} \end{aligned}$$
(9.106)

\(\forall (x,t)\in [0,L]\times [0,\infty )\pounds \urcorner \) and

$$\begin{aligned} \underset{t\rightarrow \infty }{\mathop {\lim }}\,\left| {{{\tilde{q}}}_{i}} \right| \le \sqrt{\frac{2\varepsilon }{\beta {{k}_{2}}{{\alpha }_{2}}{{\lambda }_{\min }}({{\mathbf {k}}_{p}})\lambda }}\left( i=1,2,3 \right) \end{aligned}$$
(9.107)

\(\forall t\in [0,\infty )\). Therefore, y(x, t), z(x, t) and \({{\tilde{q}}_{i}}\left( i=1,2,3 \right) \) are uniformly ultimate bounded.

Appendix 2: Simulation Program

figure a
figure b
figure c
figure d
figure e
figure f
figure g
figure h
figure i

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Tsinghua University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Liu, J. (2020). Dynamic Modeling and Vibration Control for a Nonlinear Three-Dimensional Flexible Manipulator. In: PDE Modeling and Boundary Control for Flexible Mechanical System. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2596-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2596-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2595-7

  • Online ISBN: 978-981-15-2596-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics