Skip to main content

An Overview of Roles of the Basal Ganglia in Sleep-Wake Regulation

  • Chapter
  • First Online:
Book cover Sleep Disorders in Parkinson’s Disease
  • 588 Accesses

Abstract

Sleep disorders are frequent in Parkinson’s disease and their prevalence increases with disease progression. Previous studies demonstrated that sleep disorders could appear as an initial manifestation of Parkinson’s disease even decades before motor signs, which highlight their clinical association in these early stages. Dysfunction of dopaminergic transmission in the basal ganglia involves in the pathogenesis of Parkinson’s disease and sleep disorders. This chapter will focus on reviewing the role of the basal ganglia in control of sleep and wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Videnovic A, Golombek D. Circadian and sleep disorders in Parkinson’s disease. Exp Neurol. 2013;243:45–56. https://doi.org/10.1016/j.expneurol.2012.08.018.

    Article  PubMed  Google Scholar 

  2. Lazarus M, Huang ZL, Lu J, Urade Y, Chen JF. How do the basal ganglia regulate sleep-wake behavior? Trends Neurosci. 2012;35(12):723–32. https://doi.org/10.1016/j.tins.2012.07.001.

    Article  CAS  PubMed  Google Scholar 

  3. Huang Z-L, Qu W-M, Eguchi N, Chen J-F, Schwarzschild MA, Fredholm BB, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8(7):858–9.

    Article  CAS  Google Scholar 

  4. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci. 2011;31(27):10067–75. https://doi.org/10.1523/JNEUROSCI.6730-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crittenden JR, Graybiel AM. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat. 2011;5:59.

    Article  Google Scholar 

  6. Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of sleep–wake behavior and cortical activation. Eur J Neurosci. 2010;31(3):499–507.

    Article  Google Scholar 

  7. Qiu M-H, Liu W, Qu W-M, Urade Y, Lu J, Huang Z-L. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in Modafinil-induced arousal. PLoS One. 2012;7(9):e45471.

    Article  CAS  Google Scholar 

  8. Yadav RK, Khanday MA, Mallick BN. Interplay of dopamine and GABA in substantia nigra for the regulation of rapid eye movement sleep in rats. Behav Brain Res. 2019;376:112169. https://doi.org/10.1016/j.bbr.2019.112169.

    Article  CAS  PubMed  Google Scholar 

  9. Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, et al. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun. 2018;9(1):1576. https://doi.org/10.1038/s41467-018-03889-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev. 2007;56(1):27–78.

    Article  CAS  Google Scholar 

  11. Sesack SR, Grace AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology. 2009;35(1):27–47.

    Article  Google Scholar 

  12. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81(6):891–9.

    Article  CAS  Google Scholar 

  13. Dong H, Wang J, Yang YF, Shen Y, Qu WM, Huang ZL. Dorsal striatum dopamine levels fluctuate across the sleep-wake cycle and respond to salient stimuli in mice. Front Neurosci. 2019;13:242. https://doi.org/10.3389/fnins.2019.00242.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qu W-M, Xu X-H, Yan M-M, Wang Y-Q, Urade Y, Huang Z-L. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci. 2010;30(12):4382–9.

    Article  CAS  Google Scholar 

  15. Barik S, de Beaurepaire R. Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29(5):718–26.

    Article  CAS  Google Scholar 

  16. Volkow ND, Tomasi D, Wang G-J, Telang F, Fowler JS, Logan J, et al. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J Neurosci. 2012;32(19):6711–7.

    Article  CAS  Google Scholar 

  17. Tan E. Piribedil-induced sleep attacks in Parkinson’s disease. Fundam Clin Pharmacol. 2003;17(1):117–9.

    Article  CAS  Google Scholar 

  18. Lipford MC, Silber MH. Long-term use of pramipexole in the management of restless legs syndrome. Sleep Med. 2012;13(10):1280–5.

    Article  Google Scholar 

  19. Monti JM, Hawkins M, Jantos H, D’Angelo L, Fernández M. Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology. 1988;95(3):395–400.

    Article  CAS  Google Scholar 

  20. Sebban C, Zhang X, Tesolin-Decros B, Millan M, Spedding M. Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission. Br J Pharmacol. 1999;128(5):1045–54.

    Article  CAS  Google Scholar 

  21. Murillo-Rodríguez E, Haro R, Palomero-Rivero M, Millán-Aldaco D, Drucker-Colín R. Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behav Brain Res. 2007;176(2):353–7.

    Article  Google Scholar 

  22. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21(5):1787–94.

    Article  CAS  Google Scholar 

  23. Qu W-M, Huang Z-L, Xu X-H, Matsumoto N, Urade Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci. 2008;28(34):8462–9.

    Article  CAS  Google Scholar 

  24. Scammell T, Gerashchenko D, Mochizuki T, McCarthy M, Estabrooke I, Sears C, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107(4):653–63.

    Article  CAS  Google Scholar 

  25. Satoh S, Matsumura H, Koike N, Tokunaga Y, Maeda T, Hayaishi O. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist. Eur J Neurosci. 1999;11(5):1587–97.

    Article  CAS  Google Scholar 

  26. Durieux PF, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci. 2009;12(4):393–5.

    Article  CAS  Google Scholar 

  27. Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun. 2017;8:734. https://doi.org/10.1038/s41467-017-00781-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, et al. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. elife. 2017;6:6. https://doi.org/10.7554/eLife.29055.

    Article  Google Scholar 

  29. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;68(6):1023–42.

    Article  CAS  Google Scholar 

  30. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63.

    Article  CAS  Google Scholar 

  31. Sherin J, Shiromani P, McCarley R, Saper C. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271(5246):216–9.

    Article  CAS  Google Scholar 

  32. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.

    Article  CAS  Google Scholar 

  33. Chuah YL, Venkatraman V, Dinges DF, Chee MW. The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation. J Neurosci. 2006;26(27):7156–62.

    Article  CAS  Google Scholar 

  34. Muzur A, Pace-Schott EF, Hobson JA. The prefrontal cortex in sleep. Trends Cogn Sci. 2002;6(11):475–81.

    Article  Google Scholar 

  35. Chee MW, Choo WC. Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci. 2004;24(19):4560–7.

    Article  CAS  Google Scholar 

  36. Koenigs M, Holliday J, Solomon J, Grafman J. Left dorsomedial frontal brain damage is associated with insomnia. J Neurosci. 2010;30(47):16041–3.

    Article  CAS  Google Scholar 

  37. Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization. J Comp Neurol. 2005;483(3):351–73.

    Article  Google Scholar 

  38. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006;494(5):845–61.

    Article  Google Scholar 

  39. Sano H, Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin-or melanin-concentrating hormone-containing neurons. J Neurosci. 2007;27(26):6948–55.

    Article  CAS  Google Scholar 

  40. Usuda I, Tanaka K, Chiba T. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res. 1998;797(1):73–93.

    Article  CAS  Google Scholar 

  41. Li C-S, Chung S, Lu D-P, Cho YK. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J Neurophysiol. 2012;108(5):1288–98.

    Article  Google Scholar 

  42. Heimer L, Zahm D, Churchill L, Kalivas P, Wohltmann C. Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience. 1991;41(1):89–125.

    Article  CAS  Google Scholar 

  43. Yang SR, Hu ZZ, Luo YJ, Zhao YN, Sun HX, Yin D, et al. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLoS Biol. 2018;16(4):e2002909. https://doi.org/10.1371/journal.pbio.2002909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deurveilher S, Lo H, Murphy JA, Burns J, Semba K. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol. 2006;498(5):667–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Li Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, WM., Zhang, Z., Shi, HY., Huang, ZL. (2020). An Overview of Roles of the Basal Ganglia in Sleep-Wake Regulation. In: Liu, CF. (eds) Sleep Disorders in Parkinson’s Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-2481-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2481-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2480-6

  • Online ISBN: 978-981-15-2481-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics