Skip to main content

Sponge Iron

  • Chapter
  • First Online:
Basic Concepts of Iron and Steel Making

Abstract

Processes that produce iron by reduction of iron ore in solid state are generally classified as direct reduction (DR) processes and the products also referred to as direct reduced iron (DRI) or sponge iron. Different processes of coal-based and gas-based are discussed in detail. Forms of sponge iron, characteristics of sponge iron and re-oxidation of sponge iron are described. Uses of sponge iron are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Dutta, P.J. Roy Choudhury, Inst of Engg (India). J. MM 66, 91 (March 1986)

    Google Scholar 

  2. S.K. Dutta, JPC Bull Iron & Steel XV (3), 13 (March 2015)

    Google Scholar 

  3. S.K. Dutta, R. Sah, Alternate Methods of Ironmaking (Direct Reduction and Smelting Reduction Processes). S. Chand & Co Ltd, New Delhi (April 2012)

    Google Scholar 

  4. Midrex: 2018 World Direct Reduction Statistics (May 2019)

    Google Scholar 

  5. A. Chatterjee, Proc Inter Seminar on Alternative Routes for Ironmaking in India. Steel Tech, September 2009, Kolkata, p. 5

    Google Scholar 

  6. J. McClelland, JPC Bull Iron & Steel IV (1), 109 (January 2004)

    Google Scholar 

  7. R.B. Cheeley, Direct from Midrex, 3rd Quarter (1999)

    Google Scholar 

  8. J. Kopfle, Green Steel Summit. Midrex Technology (May 2010)

    Google Scholar 

  9. S.K. Dutta, A.B. Lele, Iron & Steel Review 55(3), 162 (2011)

    Google Scholar 

  10. A. Hassan, F. Griscom, Direct from Midrex, 3rd Quarter, p. 6 (2008)

    Google Scholar 

  11. DRI Products & Applications, Midrex (January 2015)

    Google Scholar 

  12. A.K. Sarkar et al., Steel India 17(2), 45 (1994)

    Google Scholar 

  13. P. Tatia, Paper presented at National Metallurgist Day-Annual Technical Meeting of Indian Institute of Metals, November 2014, Puna, India (Privately Collected)

    Google Scholar 

  14. A. Ganguly, R.H.G. Rau, V.S. Shah, IIM Metal News 19(2), 13 (1997)

    Google Scholar 

  15. M. Paswan, C. Mukherjee, IIM Metal News 12(1), 6 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Kumar Dutta .

Appendices

Probable Questions

  1. 1.

    What do you mean by sponge iron? How DR processes are classified? What do you mean by “solid-state reduction”?

  2. 2.

    Discuss the principle and process for production of sponge iron by coal-based process.

  3. 3.

    (i) Discuss the principle of rotary kiln process for sponge iron production. (ii) What are the problems of rotary kiln process and how to overcome them?

  4. 4.

    Discuss the salient features of rotary kiln process.

  5. 5.

    Why coal-based sponge iron cannot form HBI?

  6. 6.

    Discuss the principle of Midrex process for production of HBI.

  7. 7.

    ‘Sponge iron produced by gas-based process contains more carbon than by coal-based process’. Why?

  8. 8.

    Discuss the advantages of gas-based process over the coal-based process.

  9. 9.

    Discuss the HyL III process.

  10. 10.

    What do you understand by HBI? How that are produced? Discuss the advantages of HBI.

  11. 11.

    Discuss the characteristics of sponge iron.

  12. 12.

    ‘Sponge iron has an inherent tendency to re-oxidize back to its native stage’. Why?

  13. 13.

    What are prevention methods for re-oxidation of sponge iron?

  14. 14.

    Discuss the applications of sponge iron in iron and steel industries.

  15. 15.

    ‘Steelmakers are preferred gas-based sponge iron than coal-based sponge iron’. Why?

  16. 16.

    Discuss environmental benefits of sponge iron which acts as feed material in steelmaking furnaces.

  17. 17.

    Discuss the rotary hearth furnace processes.

  18. 18.

    Discuss the ITmk3 process.

  19. 19.

    Discuss iron carbide production.

Examples

Example 7.1

An iron ore has the following composition: 58.1% FeCO3, 11.5% SiO2, 11.7% CaCO3, 10.5% Al2O3 and 8.2% H2O. It is calcined in a rotary kiln furnace fired with coke containing 84% C, 13% ash and 3% H2O. Enough air is supplied to burn the coke completely. Coke requires 80 kg per tonne of ore. Calculate (i) volume of air required at STP per tonne of ore and (ii) volume of gases generated per tonne of ore calcinated.

Solution

Since coke contains 84% C,

80 kg coke contains → 0.80 × 84 = 67.2 kg of carbon

$$ \begin{array}{*{20}c} {\text{C}} & + & {{\text{O}}_{2} } & = & {{\text{CO}}_{2} } \\ {12} & {} & {22.4\,{\text{m}}^{3} } & {} & {22.4\,{\text{m}}^{3} } \\ \end{array} $$

12 kg of C requires 22.4 m3 of O2

$$ 67.2\quad \quad \left( {\frac{22.4 \times 67.2}{12}} \right) = 125.44\,{\text{m}}^{3} \,{\text{of O}}_{2} \,{\text{or}}\,{\text{CO}}_{2} \,{\text{form}} $$

21 m3 of O2 content in 100 m3 of air

$$ 125.44\,{\text{m}}^{3} \,{\text{of O}}_{2} \quad \quad \left( {\frac{100 \times 125.44}{21}} \right) = {\mathbf{597}}.{\mathbf{33}}\,{\mathbf{m}}^{{\mathbf{3}}} \,{\mathbf{of}}\,{\mathbf{air}} $$
  • Volume of air required at STP per tonne of ore = 597.33 m3

  • Amount of N2 = amount of air − amount of O2 = 597.33 − 125.44 = 471.89 m3

  • Amount of CO2 form by burning of coke = 125.44 m3

  • Iron ore contains 58.1% FeCO3 and 11.7% CaCO3.

  • That is, one tonne ore contains 581 kg FeCO3 and 117 kg CaCO3.

    $$ \begin{array}{*{20}c} {{\text{FeCO}}_{3} } & = & {\text{FeO}} & + & {{\text{CO}}_{2} } \\ {116} & {} & {} & {} & {22.4\,{\text{m}}^{3} } \\ \end{array} $$

116 kg of FeCO3 forms 22.4 m3 of CO2

$$ 581\,{\text{kg}}\quad \quad \left( {\frac{22.4 \times 581}{116}} \right) = 112.19\,{\text{m}}^{3} \,{\text{of}}\,{\text{CO}}_{2} $$
$$ \begin{array}{*{20}c} {{\text{CaCO}}_{3} } & = & {\text{CaO}} & + & {{\text{CO}}_{2} } \\ {100} & {} & {} & {} & {22.4{\text{m}}^{3} } \\ \end{array} $$

100 kg of CaCO3 forms 22.4 m3 of CO2

$$ 117\,{\text{kg}}\quad \quad \left( {\frac{22.4 \times 117}{100}} \right) = 26.21\,{\text{m}}^{3} {\text{ of CO}}_{2} $$
$$ \begin{aligned} {\text{Total CO}}_{2} \,{\text{form}} & = {\text{CO}}_{2} \,{\text{form coke}} + {\text{CO}}_{2} \,{\text{form FeCO}}_{3} + {\text{CO}}_{2} \,{\text{form CaCO}}_{3} \\ & = 125.44 + 112.19 + 26.21 = {\mathbf{263}}.{\mathbf{84}}\,{\mathbf{m}}^{{\mathbf{3}}} \\ \end{aligned} $$

18 kg of H2O = 22.4 m3 of H2O

$$ (0.03 \times 80){\text{kg of H}}_{2} {\text{O from coke}} = \left( {\frac{22.4 \times 2.4}{18}} \right){\text{m}}^{3} \,{\text{of H}}_{2} {\text{O}} = 2.99\,{\text{m}}^{3} \,{\text{of H}}_{2} {\text{O form coke}} $$

18 kg of H2O = 22.4 m3 of H2O

$$ 82\,{\text{kg}}\quad \quad \left( {\frac{22.4 \times 82}{18}} \right){\text{m}}^{3} \,{\text{of H}}_{2} {\text{O}} = 102.04\,{\text{m}}^{3} \,{\text{of H}}_{2} {\text{O form ore}}. $$

Total moisture = 2.99 + 102.04 = 105.03 m3

Therefore,

$$ \begin{aligned} {\text{total amount of gases }}({\text{N}}_{2} + {\text{CO}}_{2} + {\text{H}}_{2} {\text{O}}) & = 471.89 + 263.84 + 105.03 \\ & = {\mathbf{840}}.{\mathbf{76}}\,{\mathbf{m}}^{{\mathbf{3}}} \\ \end{aligned} $$

Example 7.2

Total iron content in ore and DRI are 65.1 and 90%, respectively. If the production rate of a rotary kiln furnace is 4.16 t/hr, what is the rate of iron ore charged to the rotary kiln furnace?

Solution

Fe Balance:

Fe from ore = Fe in DRI

$$ ({\text{T}}_{{{\text{Fe}},{\text{ore}}}} /100) \times {\text{W}}_{\text{ore}} = ({\text{T}}_{{{\text{Fe}},{\text{DRI}}}} /100) \times {\text{W}}_{\text{DRI}} $$
(1)

Since \( {\text{W}}_{\text{DRI}} = 4.16\,{\text{t}}/{\text{hr}},{\text{T}}_{{{\text{Fe}},{\text{DRI}}}} = 90\% \,{\text{and}}\,{\text{T}}_{{{\text{Fe}},{\text{ore}}}} = 65.1\% \)

So from Eq. (1): (65.1/100) × Wore = (90/100) × 4.16 = 3.744

Therefore, \( {\text{W}}_{\text{ore}} = (3.744/0.651) = 5.75\,{\text{t}}/{\text{hr}} \).

The rate of iron ore charged to the rotary kiln furnace is 5.75 t/hr.

Example 7.3

Find out the change of free energy \( (\Delta G_{r,298}^{ \circ } ) \) and minimum temperature for the following reactions:

  1. (a)

    \( 3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{CO}} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}}_{2} \)

  2. (b)

    \( {\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} \)

Given:

$$ \begin{aligned} & 3{\text{Fe}}_{2} {\text{O}}_{3} = 2{\text{Fe}}_{3} {\text{O}}_{4} + 1/2{\text{O}}_{2} ,\Delta G_{r}^{ \circ } = 249.45{-}0.14\,{\text{T}}\,{\text{kJ}} \\ & {\text{Fe}}_{3} {\text{O}}_{4} = 3{\text{FeO}} + 1/2{\text{O}}_{2} ,\Delta G_{r}^{ \circ } = 312.21 - 0.125\,{\text{T}}\,{\text{kJ}} \\ & {\text{C}} + 1/2{\text{O}}_{2} = {\text{CO}},\Delta G_{r}^{ \circ } = - 111.71 - 0.088\,{\text{T}}\,{\text{kJ}} \\ & {\text{C}} + {\text{O}}_{2} = {\text{CO}}_{2} ,\Delta G_{r}^{ \circ } = - 394.13 - 8.4 \times 10^{ - 4} {\text{T}}\,{\text{kJ}} \\ \end{aligned} $$

Solution

  1. (a)
    $$ \begin{array}{*{20}l} \begin{aligned} \quad 3{\text{Fe}}_{2} {\text{O}}_{3} & = 2{\text{Fe}}_{3} {\text{O}}_{4} + 1/2{\text{O}}_{2} ,\Delta G_{{{\text{Fe}}_{2} {\text{O}}_{3} }}^{ \circ } \\ \quad {\text{CO}} & = {\text{C}} + 1/2{\text{O}}_{2} , - \Delta G_{\text{CO}}^{ \circ } \\ \quad {\text{C}} + {\text{O}}_{2} & = {\text{CO}}_{2} ,\quad \Delta G_{{{\text{CO}}_{2} }}^{ \circ } \\ \end{aligned} \hfill \\ {\begin{array}{*{20}l} {\quad - - - - - - - - - - - - - - - - - - - } \hfill \\ {3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{CO}} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}}_{2} ,\Delta G_{f}^{ \circ } = (\Delta G_{{{\text{Fe}}_{2} {\text{O}}_{3} }}^{ \circ } - \Delta G_{\text{CO}}^{ \circ } + \Delta G_{{{\text{CO}}_{2} }}^{ \circ } )} \hfill \\ \end{array} } \hfill \\ \end{array} $$

Therefore,

$$ \begin{aligned} \Delta {\text{G}}_{f}^{ \circ } & = \left[ {(249.45{-}0.14\,{\text{T}}){-}( - 111.71{-}0.088\,{\text{T}}) + ( - 394.13 - 8.4 \times 10^{ - 4} {\text{T}})} \right] \\ & = - {\mathbf{32}}.{\mathbf{97}} - {\mathbf{0}}.{\mathbf{052}}\,{\mathbf{T}}\,{\mathbf{kJ}} \\ \end{aligned} $$

At equilibrium, \( \Delta {\text{G}}_{f}^{ \circ } = 0 \)

Hence, 32.97 − 0.052 T = 0.

Therefore, T = −634 K = −361 .

  1. (b)

    \( \begin{array}{*{20}l} \begin{aligned} \quad {\text{Fe}}_{3} {\text{O}}_{4} & = 3{\text{FeO}} + 1/2{\text{O}}_{2} ,\quad \Delta G_{{{\text{Fe}}_{3} {\text{O}}_{4} }}^{ \circ } \\ \quad {\text{CO}} & = {\text{C}} + 1/2{\text{O}}_{2} ,\quad - \Delta G_{\text{CO}}^{ \circ } \\ \quad {\text{C}} + {\text{O}}_{2} & = {\text{CO}}_{2} ,\quad \Delta G_{{{\text{CO}}_{2} }}^{ \circ } \\ \end{aligned} \hfill \\ {\begin{array}{*{20}l} {\quad - - - - - - - - - - - - - - - - - - - } \hfill \\ {{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} ,\Delta G_{f}^{ \circ } = (\Delta G_{{{\text{Fe}}_{3} {\text{O}}_{4} }}^{ \circ } - \Delta G_{\text{CO}}^{ \circ } + \Delta G^{ \circ }_{{{\text{CO}}_{2} }} )} \hfill \\ \end{array} } \hfill \\ \end{array} \)

Therefore,

$$ \begin{aligned} \Delta G_{f}^{0} & = \left[ {(312.21{-}0.125\,{\text{T}}){-}( - 111.71{-}0.088\,{\text{T}}) + ( - 394.13 - 8.4 \times 10^{ - 4} {\text{T}})} \right] \\ & = {\mathbf{29}}.{\mathbf{79}}{-}{\mathbf{0}}.{\mathbf{037}}\,{\mathbf{T}}\,{\mathbf{kJ}} \\ \end{aligned} $$

At equilibrium, \( \Delta G_{f}^{ \circ } = 0 \)

Hence, 29.79 − 0.037 T = 0.

Therefore, T = 805 K = 532 .

Example 7.4

Calculate the minimum per cent of carbon monoxide required to reduce FeO at 727 ℃ and (i) one atmospheric pressure and (ii) 1.5 atm. The reduction is taking place as follows:

$$ {\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} \quad \Delta G^{ \circ } = - 22802.8 + 28.45\,{\text{T}}\,{\text{J}}/{\text{mol}} $$

Solution

  • T = 727 + 273 = 1000 K

  • \( \Delta G^{ \circ } = - 22802.8 + 28.45 \times 1000 = 5647.2\,{\text{J}}/{\text{mol}} \)

  • Since ∆G° = −RT ln k

  • Therefore, \( 5647.2 = - 8.314 \times 1000 \times \ln k \)

  • ln k = −0.6792

  • Therefore, k = 0.507.

  • Again, \( k = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) \)

  • Case I

  • \( p_{{{\text{CO}}_{2} }} + p_{\text{CO}} = 1\,{\text{atm}} \)

  • Let pCO = x atm, \( p_{{{\text{CO}}_{2} }} \) = 1 − x

Therefore, \( \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = \left( {\frac{1 - x}{x}} \right) = k = 0.507 \)

  • Therefore, x = 0.6635 atm.

  • Per cent of CO = 66.35%

  • Case II

  • \( p_{{{\text{CO}}_{2} }} + p_{\text{CO}} = 1.5\,{\text{atm}} \)

  • Let pCO = x atm, \( p_{{{\text{CO}}_{2} }} \) = 1.5 − x

Therefore, \( \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = \left( {\frac{1.5 - x}{x}} \right) = K = 0.507 \)

  • Therefore, x = 0.9953 atm.

  • Per cent of CO = 99.53%

Example 7.5

Find the change in the percentage of hydrogen in a mixture of 75% H2 and 25% CH4 in equilibrium with carbon if the total pressure changes from 1 to 0.1 atm. What is the temperature of this equilibrium at 1 atm pressure?

Given: \( {\text{CH}}_{4} = {\text{C}} + 2\,{\text{H}}_{2} ,\quad \Delta G^{\circ} = 90165.2{-}109.45\,{\text{T}}\,{\text{J}} \)

Solution

Equilibrium constant, \( k = \left( {\frac{{p_{{{\text{H}}_{2} }}^{2} }}{{p_{{{\text{CH}}_{4} }} }}} \right) \)

Total pressure = 1 atm = pH2 + pCH4

Since 75% H2 and 25% CH4, i.e. pH2 = 0.75, and pCH4 = 0.25

Hence, \( k = \left( {\frac{{p_{{{\text{H}}_{2} }}^{2} }}{{p_{{{\text{CH}}_{4} }} }}} \right) = \left( {\frac{{0.75^{2} }}{0.25}} \right) = 2.25 \), and ln k = 0.8109.

Since \( \Delta G^{\circ} = - {\text{RT}}\ln k = - 8.314 \times T \times \ln k \)

Therefore, \( 90165.2{-}109.45\,{\text{T}} = - 8.314 \times {\text{T}} \times 0.8109 = - 6.74\,{\text{T}} \)

Hence, T = 877.88 K = 604.88 .

  • Now, total pressure changes from 1 atm to 0.1 atm.

  • So, \( p_{{{\text{H}}_{2} }} + p_{{{\text{CH}}_{4} }} = 0.1\,{\text{atm}} \)

  • Let \( p_{{{\text{H}}_{2} }} = x \), \( p_{{{\text{CH}}_{4} }} = (0.1{-}x) \)

  • Since ΔGo = −RT ln k

  • Therefore, \( 90165.2{-}109.45\,{\text{T}} = - 8.314 \times {\text{T}} \times \ln k \)

  • Or \( 90165.2{-}109.45 \times 878 = - 8.314 \times 878 \times \ln k \) (since T = 878 K)

  • Or ln k = 0.813 or k = 2.25

  • Since \( k = \left( {\frac{{p_{{{\text{H}}_{2} }}^{2} }}{{p_{{{\text{CH}}_{4} }} }}} \right) = \left( {\frac{{x^{2} }}{0.1 - x}} \right) = 2.25 \)

Or \( x^{2} + 2.25x{-}0.225 = 0 \)

$$ {\text{Roots}} = \left( {\frac{{\left\{ { - b \pm \surd \left( { b^{2} {-} 4ac} \right)} \right\}}}{2a}} \right) $$

Therefore, \( x = \left( {\frac{{\left\{ { - 2.25 \pm \surd \left( { 2.25^{2} {-} 4.1.( - 0.225)} \right)} \right\}}}{{2{\text{x}}1}}} \right) \)

Hence, x = 0.096, so H2 = 9.6%.

Therefore, the change in the percentage of hydrogen in a mixture of 75% H2 and 25% CH4 in equilibrium with carbon, if the total pressure changes from 1 atm to 0.1 atm, is 9.6%.

Example 7.6

Calculate the equilibrium CO: CO2 ratio and %CO at 900 ℃ according to reaction:

$$ {\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} $$

Given:

$$ \begin{aligned} & {\text{C}} + {\text{O}}_{2} = {\text{CO}}_{2} \quad \Delta G^{ \circ } = - 394,100{-}0.84\,{\text{T}}\;{\text{J}} \\ & {\text{C}} + 1/2{\text{O}}_{2} = {\text{CO}}\quad \Delta G^{ \circ } = - 111,000{-}87.65\,{\text{T}}\;{\text{J}} \\ & {\text{Fe}} + 1/2{\text{O}}_{2} = {\text{FeO}}\quad \Delta G^{ \circ } = - 259,600 + 62.55\,{\text{T}}\;{\text{J}} \\ \end{aligned} $$

Solution

$$ \begin{array}{*{20}l} \begin{aligned} \quad {\text{FeO}} = {\text{Fe}} + 1/2{\text{O}}_{2} \quad \Delta G^{ \circ } = 259,600 - 62.55\,{\text{T}} \hfill \\ \quad {\text{CO}} = {\text{C}} + 1/2{\text{O}}_{2} \quad \Delta G^{ \circ } = 1111,000 + 87.65\,{\text{T}} \hfill \\ \quad {\text{C}} + {\text{O}}_{2} = {\text{CO}}_{2} \quad \Delta G^{ \circ } = - 394,100 - 0.84\,{\text{T}} \hfill \\ \end{aligned} \hfill \\ \hline {\begin{array}{*{20}c} { - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } \\ {{\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} \quad \Delta G^{ \circ } = - 23500 + 24.26\,{\text{T}} = - 23500 + 24.26 \times 1173 = 4956.98\,{\text{J}}} \\ \end{array} } \hfill \\ \end{array} $$
  • Since ∆G° = −RT ln k

  • Therefore, 4956.98 = −8.314 × 1173 × ln k.

  • ln k = −508

  • Therefore, k = 0.6015.

Again, \( k = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) \)

So, \( \left( {\frac{{p_{{CO_{2} }} }}{{p_{CO} }}} \right) = \left( {\frac{1}{k}} \right) = \left( {\frac{1}{0.6015}} \right) = {\mathbf{1}}.{\mathbf{66}} \)

Therefore, the equilibrium CO: CO2 ratio is 1.66.

  • Let pCO = x, since \( p_{\text{CO}} + p_{{{\text{CO}}_{2} }} = 1 \).

  • Therefore, \( p_{{{\text{CO}}_{2} }} = 1 - x \).

  • Hence, \( k = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = \left( {\frac{1 - x}{x}} \right) = 0.6015 \)

  • Therefore, \( x = \left( {\frac{1}{1.6015}} \right) \) = 0.624, i.e. CO = 62.4%.

Example 7.7

Find out whether FeO can be reduced by H2/H2O mixture containing 60% H2 and 40% H2O at 727 ℃.

$$ \begin{aligned} & {\text{Fe}} + 1/2{\text{O}}_{2} = {\text{FeO}}\quad \Delta G^{ \circ } = - 259,600 + 62.55\,{\text{T}}\;{\text{J}} \\ & {\text{H}}_{2} + 1/2{\text{O}}_{2} = {\text{H}}_{2} {\text{O}}\quad \Delta G^{ \circ } = - 246,000 + 54.8\,{\text{T}}\;{\text{J}} \\ \end{aligned} $$

Solution

$$ \begin{array}{*{20}l} \begin{aligned} {\text{FeO}} & = {\text{Fe}} + 1/2{\text{O}}_{2} \quad \Delta G^{ \circ } = 259,600 - 62.55\,{\text{T}} \\ {\text{H}}_{2} + 1/2{\text{O}}_{2} & = {\text{H}}_{2} {\text{O}}\quad \Delta G^{ \circ } = - 246,000 + 54.8\,{\text{T}} \\ \end{aligned} \hfill \\ \hline {{\text{FeO}} + {\text{H}}_{2} = {\text{Fe}} + {\text{H}}_{2} {\text{O}}\quad \Delta G^{ \circ } = 13600{-}7.75\,{\text{T}} = 13600{-}7.75 \times 1000 = 850\,{\text{J}}} \hfill \\ \end{array} $$
  • G° = −RT ln k

  • Therefore, 5850 = −8.314 × 1000 × ln k.

  • ln k = −0.7036

  • \( k = 0.4948 = \left( {\frac{{p_{{{\text{H}}_{2} {\text{O}}}} }}{{p_{{{\text{H}}_{2} }} }}} \right),p_{{{\text{H}}_{2} {\text{O}}}} + p_{{{\text{H}}_{2} }} = 1\,{\text{atm}},{\text{Let }}p_{{{\text{H}}_{2} }} = x \)

  • Therefore, 0.4948 = \( \left( {\frac{1 - x}{x}} \right) \)

  • x = 0.6689 atm

  • Pct of hydrogen = 66.89%

Since 60% H2 is present in mixture, equilibrium H2 requires minimum 66.89%; hence, FeO cannot be reduced by H2 and H2O mixture containing 60% H2 and 40% H2O at 727 ℃.

Another thing should be noted that ∆G0 value is positive. Hence, from that value also it can be concluded that reduction is not feasible at all at 727 ℃.

Example 7.8

Iron sample is heated at 1000 ℃ in an atm of hydrogen which contains some moisture. Find out the maximum permissible water vapour in hydrogen to avoid oxidation of iron sample.

Given: \( {\text{FeO}} + {\text{H}}_{2} = {\text{Fe}} + {\text{H}}_{2} {\text{O}}\quad \Delta G^{ \circ } = 12761.2{-}7.03{\text{T}}\;{\text{J}}/{\text{mol}} \)

Solution

  • T = 1000 ℃ = 1273 K

  • \( \Delta G^{ \circ } = 12761.2{-}7.03\,{\text{T}} = 12761.2{-}7.03 \times 1273 = 3812.01\,{\text{J}}/{\text{mol}} \)

  • Since ∆G° = −RT ln k

  • Therefore, \( 3812.01 = - 8.314 \times 1273 \times \ln k \)

  • ln k = −0.3602

  • \( k = 0.6975 = \left( {\frac{{p_{{{\text{H}}_{2 } {\text{O}}}} }}{{p_{{{\text{H}}_{2} }} }}} \right) = \left( {\frac{1 - x}{x}} \right) \) [let \( p_{{{\text{H}}_{2} }} = x \)]

Therefore, x = 0.5891, i.e. H2 = 58.91%.

  • So, \( {\text{H}}_{2} {\text{O}} = 100{-}58.91 = 41.09\% \)

  • Hence, the maximum permissible water vapour in hydrogen to avoid oxidation of iron sample is 41%.

Problems

Problem 7.1

Total iron content in ore and DRI are 66% and 92%, respectively. If the production rate is 5 t/hr, what is the rate of iron ore charged to the rotary kiln furnace?

[Ans: 6.97 t/hr.]

Problem 7.2

Hydrogen is passed through a furnace at 800 ℃, containing FeO (solid), which is undergoing reduction to form Fe. Find out the percentage of utilization of H2 gas, assuming that equilibrium prevails.

Given: \( \Delta G_{r}^{\circ} = 8368\,{\text{J}}/{\text{mol at }}800^\circ {\text{C}} \).

[Ans: 71.87%]

Problem 7.3

Find out whether FeO can be reduced by H2 and H2O mixture containing 60% H2 and 40% H2O at 600 ℃.

$$ \begin{aligned} & {\text{Fe}} + 1/2{\text{O}}_{2} = {\text{FeO}}\quad \Delta G^{ \circ } = - 259,600 + 62.55\,{\text{T}}\;{\text{J}} \\ & {\text{H}}_{2} + 1/2{\text{O}}_{2} = {\text{H}}_{2} {\text{O}}\quad \Delta G^{ \circ } = - 246,000 + 54.8\,{\text{T}}\;{\text{J}} \\ \end{aligned} $$

[Ans: Since 60% H2 is present in mixture, equilibrium H2 requires minimum 71.94%; hence FeO cannot be reduced by H2 and H2O mixture containing 60% H2 and 40% H2O at 600 ℃.]

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S.K., Chokshi, Y.B. (2020). Sponge Iron. In: Basic Concepts of Iron and Steel Making. Springer, Singapore. https://doi.org/10.1007/978-981-15-2437-0_7

Download citation

Publish with us

Policies and ethics