Skip to main content

Molten Salt Conversion of Plastics into Highly Conductive Carbon Nanostructures

  • Chapter
  • First Online:
Green Production of Carbon Nanomaterials in Molten Salts and Applications

Abstract

The pollution caused by the increasing accumulation of plastic wastes in the environment is considered a serious emerging threat to our wildlife, habitats and to us. In fact, the efficient removal of plastic wastes from the environment is challenging in the absence of a strong economic driving force. Such a driving force can be achieved through the low-cost conversion of plastic wastes into highly valuable outputs such as high-quality graphene materials. This chapter provides an introduction into thermokinetic characterization of polyethylene terephthalate, the most commonly used plastic, and then deals with the molten salt—assisted conversion of plastic bottles into graphene nanostructures with a high surface area, degree of crystallinity and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kutz (ed.), Applied Plastics Engineering Handbook, Processing, Materials and Applications, 2nd edn (Elsevier, 2017)

    Google Scholar 

  2. K. Chikaoui, M. Izerrouken, M. Djebara, M. Abdesselam, Polyethylene terephthalate degradation under reactor neutron irradiation. Phys. Chem. 130, 431–435 (2017)

    CAS  Google Scholar 

  3. R.J.L. Escárcega, M.G.S. Anguiano, T. Serrano, J.Y. Chen, I. Gómez, Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym. Bull. 76, 4157–4188 (2019)

    Article  CAS  Google Scholar 

  4. I.T. Wysocki, P.L. Billon, Plastics at sea: Treaty design for a global solution to marine plastic pollution. Environ. Sci. Policy 100, 94–104 (2019)

    Article  Google Scholar 

  5. R.C. Thompson, C.J. Moore, F.S. vom Saal, S.H. Swan, Plastics, the environment and human health: Current consensus and future trends. Phil. Trans. R. Soc. B 364, 2153–2166 (2009)

    Article  CAS  Google Scholar 

  6. L. Cauwenberghe, C.R. Janssen, Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014)

    Article  CAS  Google Scholar 

  7. T. Galloway, C. Lewis, Marine microplastics. Curr. Biol. 27, 431–510 (2017)

    Article  CAS  Google Scholar 

  8. B. Kunwar, H.N. Cheng, S.R. Chandrashekaran, B.K. Sharma, Plastics to fuel: A review. Energy Rev. 54, 421–428 (2016)

    CAS  Google Scholar 

  9. A. Naji, M. Nuri, A. Dick Vethaak, Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 235, 113–120 (2018)

    Article  CAS  Google Scholar 

  10. R. Geyer, J.R. Jambeck, K. Lavender Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3, 1700782 (2017)

    Article  CAS  Google Scholar 

  11. C. Ioakeimidis, K.N. Fotopoulou, H.K. Karapanagioti, M. Geraga, C. Zeri, E. Papathanassiou et al., The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Sci. Rep. 6, 23501 (2016)

    Article  CAS  Google Scholar 

  12. I. Abo El-Naga, M. Ragab, Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures. Constr. Build. Mater. 219, 81–90 (2019)

    Article  CAS  Google Scholar 

  13. N.S.L. Louzada J.A.C. Malko, M.D.T. Casagrande, D.Sc, Behavior of clayey soil reinforced with polyethylene terephthalate. J. Mater. Civ. Eng. 31, 04019218 (2019)

    Article  Google Scholar 

  14. D.V. Marques, R.L. Barcelos, G.O.C. Parma, E. Girotto, A.C. Júnior, N.C. Pereira, R.F. Magnago, Recycled polyethylene terephthalate and aluminum anodizing sludge-based boards with flame resistance. Waste Manag. 92, 1–14 (2019)

    Article  CAS  Google Scholar 

  15. A.B. Raheem, Z. Zainon Noor, A. Hassan, M.K. Abd Hamid, S.A. Samsudin, A.H. Sabeen, Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Cleaner Prod. 225, 1052–1064 (2019)

    Article  CAS  Google Scholar 

  16. T. Tomsej, J. Horak, S. Tomsejova, K. Krpec, J. Klanova, M. Dej et al., The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene. Chemosphere 196, 18–24 (2018)

    Article  CAS  Google Scholar 

  17. G. Lopez, M. Artetxe, M., Amutio, J. Alvarez, J. Bilbao, M. Olazar, Recent advances in the gasification of waste plastics. A critical overview, Renew. Sustain. Energy Rev. 82, 576–596 (2018)

    Article  CAS  Google Scholar 

  18. J. Alvarez, S. Kumagai, C. Wu, T. Yoshioka, J. Bilbao, M. Olazar et al., Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrogen Energy 39, 10883–10891 (2014)

    Article  CAS  Google Scholar 

  19. Z. Abu El-Rub, E.A. Bramer, G. Brem, Review of catalysts for tar elimination in biomass gasification processes, Ind. Eng. Chem. Res. 43, 6911–6919 (2004)

    Article  CAS  Google Scholar 

  20. K.G. Burra, A.K. Gupta, Synergistic effects in steam gasification of combined biomass and plastic waste mixtures. Appl. Energy 211, 230–236 (2018)

    Article  CAS  Google Scholar 

  21. R. Koshti, L. Mehta, N. Samarth, Biological recycling of polyethylene terephthalate: A mini-review. J. Polym. Environ. 26, 3520–3529 (2018)

    Article  CAS  Google Scholar 

  22. B. Molnar, F. Ronkay, Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull. 76, 2387–2398 (2019)

    Article  CAS  Google Scholar 

  23. H. Eliasson, B.E. Mellander, Higher-order mode-coupling theory analysis of dielectric measurements on semi-crystalline PET (poly(ethylene terephthalate)). J. Phys.: Condens. Matter 11, 8807–8817 (1999)

    CAS  Google Scholar 

  24. A.R. Kamali, J. Yang, Q. Sun, Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity. Appl. Surf. Sci. 476, 539–551 (2019)

    Article  CAS  Google Scholar 

  25. E. Gonzalez II, M.D. Barankin, P.C. Guschl, R.F. Hicks, Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate. Langmuir 24, 12636–12643 (2008)

    Article  CAS  Google Scholar 

  26. N. Tanaka, Two equilibrium melting temperatures and physical meaning of DSC melting peaks in poly(ethylene terephthalate). Polymer 49, 5353–5356 (2008)

    Article  CAS  Google Scholar 

  27. N. Hamidi, Kinetics study of the thermal decomposition of post-consumer poly(ethylene terephthalate) in an argon atmosphere. J. Macromol. Sci. Part B Phys. 58(2), 210–247 (2019)

    Article  CAS  Google Scholar 

  28. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    Article  CAS  Google Scholar 

  29. P. Ruz, S. Banerjee, M. Pandey, V. Sudarsan, P.U. Sastry, R.J. Kshirsagar, Structural evolution of turbostratic carbon: Implications in H2 storage. Solid State Sci. 62, 105–111 (2016)

    Article  CAS  Google Scholar 

  30. P. Ramakrishnan, S. Shanmugam, Nitrogen-doped carbon nanofoam derived from amino acid chelate complex for supercapacitor applications. J. Power Sources 316, 60–71 (2016)

    Article  CAS  Google Scholar 

  31. N. Subramanian, B. Viswanathan, Nitrogen- and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Adv. 5, 63000–63011 (2015)

    Article  CAS  Google Scholar 

  32. R.Z. Li, J.F. Huang, Z.W. Xu, H. Qi, L.Y. Cao, Y.J. Liu, W.B. Li, J.Y. Li, Controlling the thickness of disordered turbostratic nanodomains in hard carbon with enhanced sodium storage performance. Energy Technol. 6, 1080–1087 (2018)

    Article  CAS  Google Scholar 

  33. R. Kumar, T. Bhuvana, A. Sharma, Tire waste derived turbostratic carbon as an electrode for a vanadium redox flow battery. ACS Sustain. Chem. Eng. 6, 8238–8246 (2018)

    Article  CAS  Google Scholar 

  34. VZh Shemet, A.P. Pomytkin, V.S. Neshpor, High temperature oxidation behavior of carbon materials in air. Carbon 31, 1–6 (1993)

    Article  CAS  Google Scholar 

  35. J.R. Hahn, Kinetic study of graphite oxidation along two lattice directions. Carbon 43, 1506–1511 (2005)

    Article  CAS  Google Scholar 

  36. M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon 45, 2341–2350 (2007)

    Article  CAS  Google Scholar 

  37. D.W. McKee, D. Chatterji, The catalytic behavior of alkali metal carbonates and oxides in graphite oxidation reactions. Carbon 13, 381–390 (1975)

    Article  CAS  Google Scholar 

  38. A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation of molten salt electrolytically produced carbon nanomaterials. Corros. Sci. 54, 307–313 (2012)

    CAS  Google Scholar 

  39. A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros. Sci. 64, 90–97 (2012)

    Article  CAS  Google Scholar 

  40. A. Gutierrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, J. Martínez-Fernandez, Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. J. Power Sources 278, 18–26 (2015)

    Article  CAS  Google Scholar 

  41. J. Ni, Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016)

    Article  CAS  Google Scholar 

  42. T. Chen, L. Dai, Carbon nanomaterials for high performance supercapacitors. Mater. Today 16, 272–280 (2013)

    Article  CAS  Google Scholar 

  43. M. Notarianni, J. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–196 (2016)

    Article  CAS  Google Scholar 

  44. S. Araby, Q. Meng, L. Zhang, I. Zaman, P. Majewski, J. Ma, J. Elastomeric composites based on carbon nanomaterials. Nanotechnology 26, 112001 (2015)

    Article  CAS  Google Scholar 

  45. S. Jin, G.H. Jun, S. Jeon, S.H. Hong, Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells. Nano Converg. 3, 8 (2016)

    Article  CAS  Google Scholar 

  46. F. Hof, K. Kampioti, K. Huang, C. Jaillet, A. Derré, P. Poulin et al., Conductive inks of graphitic nanoparticles from a sustainable carbon feedstock. Carbon 111, 142–149 (2017)

    Article  CAS  Google Scholar 

  47. M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42, 5843–5859 (2008)

    Article  CAS  Google Scholar 

  48. N. Nan, J. Wang, FIB-SEM Three-dimensional tomography for characterization of carbon-based materials. Adv. Mater. Sci. Eng. 8680715 (2019)

    Google Scholar 

  49. A.S.R. Bati, L. Yu, M. Batmunkh, J.G. Shapter, Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 10, 22087–22139 (2018)

    Article  CAS  Google Scholar 

  50. P. González-García, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sust. Energ. Rev. 82, 1393–1414 (2018)

    Article  CAS  Google Scholar 

  51. R. Beams, L.G. Canc, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 27, 083002 (2015)

    Google Scholar 

  52. W.W. Liu, S.P. Chai, A.R. Mohamed, U. Hashim, Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 20, 1171–1185 (2014)

    Article  CAS  Google Scholar 

  53. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  54. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  CAS  Google Scholar 

  55. H.C. Lee, W.W. Liu, S.P. Chai, A.R. Mohamed, A. Aziz, C.S. Khe et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017)

    Article  CAS  Google Scholar 

  56. M.S. Dresselhaus, A. Jorio, A.G.S. FilhoI, Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil. Trans. R. Soc. A 368, 5355–5377 (2010)

    Article  CAS  Google Scholar 

  57. M. Mohandoss, S. Sen Gupta, A. Nelleri, T. Pradeep, S.M. Maliyekkal, Solar mediated reduction of graphene oxide, RSC Adv. 7, 957–963 (2017)

    Article  CAS  Google Scholar 

  58. P. Rai, K.P. Singh, Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application. J. Environ. Manag. 207, 249–261 (2018)

    Article  CAS  Google Scholar 

  59. J.B. Parra, C.O. Ania, A. Arenillas, F. Rubiera, J.J. Pis, J.M. Palacios, Structural changes in polyethylene terepthalate (PET) waste materials caused by pyrolysis and CO2 activation. Adsorpt. Sci. Technol. 24, 439–449 (2006)

    Article  CAS  Google Scholar 

  60. E. Lorenc-Grabowska, M.A. Diez, G. Gryglewicz, Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J. Colloid Interface Sci. 469, 205–212 (2016)

    Article  CAS  Google Scholar 

  61. F. Lian, B. Xing, L. Zhu, Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J. Colloid Interface Sci. 360, 725–730 (2011)

    Article  CAS  Google Scholar 

  62. I. Fernandez-Morales, M.C. Almazan-Almazan, M. Perez-Mendoza, M. Domingo-García, F.J. Lopez-Garzon, PET as precursor of microporous carbons:preparation and characterization. Micropor. Mesopor. Mater. 80, 107–115 (2005)

    Article  CAS  Google Scholar 

  63. A.J. Berkmans, M. Jagannatham, S. Priyanka, P. Haridoss, Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Manage. 34, 2139–2145 (2014)

    Article  CAS  Google Scholar 

  64. C. Wu, M.A. Nahil, N. Miskolczi, J. Huang, P.T. Williams, Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ. Sci. Technol. 48, 819–826 (2014)

    Article  CAS  Google Scholar 

  65. M.N.M. Hatta, M.S. Hashim, R. Hussin, S. Aida, Z. Kamdi, A.R. Ainuddin, Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition. J. Phys. Conf. Ser. 914, 012029 (2017)

    Google Scholar 

  66. V.G. Pol, Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environ. Sci. Technol. 44, 4753–4759 (2010)

    Article  CAS  Google Scholar 

  67. N.A.E. Essawy, S.M. Ali, H.A. Farag, A.H. Konsowa, M. Elnouby, H.A. Hamad, Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotoxicol. Environ. Safety 145, 57–68 (2017)

    Article  CAS  Google Scholar 

  68. Z. Hu, X. Xiao, H. Jin, T. Li, M. Chen, Z. Liang, Z. Guo, J. Li, J. Wan, L. Huang, Y. Zhang, G. Feng, J. Zhou, Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 8, 15630 (2017)

    Google Scholar 

  69. Z. Li, X. Zhang, J. Hou, K. Zhou, Molten salt synthesis of anisometric Sr3Ti2O7 particles. J. Cryst. Growth 305, 265–270 (2007)

    Article  CAS  Google Scholar 

  70. A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)

    Article  CAS  Google Scholar 

  71. A.R. Kamali, C. Schwandt, D.J. Fray, Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Mater. Character. 62, 987–994 (2011)

    Article  CAS  Google Scholar 

  72. K.S.W. Sing, D.H. Everrtt, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  73. H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010)

    Article  CAS  Google Scholar 

  74. L. Zou, C. Lan, X. Li, S. Zhang, Y. Qiu, Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding. Fiber. Polym. 16, 2158–2164 (2015)

    Article  CAS  Google Scholar 

  75. B. Weng, Y.J. Xu, What if the electrical conductivity of graphene is significantly deteriorated for the graphene–semiconductor composite-based photocatalysis? ACS Appl. Mater. Interfaces. 7, 27948–27958 (2015)

    Article  CAS  Google Scholar 

  76. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future. Mater. Today 18, 252–264 (2015)

    Article  CAS  Google Scholar 

  77. A. Rezaei, B. Kamali, A.R. Kamali, Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures. Measurement 150, 107087 (2020)

    Article  Google Scholar 

  78. F. Sun, J. Gao, X. Liu, X. Pi, Y. Yang, S. Wu, Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Appl. Surf. Sci. 387, 857–863 (2016)

    Article  CAS  Google Scholar 

  79. Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018)

    Article  CAS  Google Scholar 

  80. J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23735 (2012)

    Article  CAS  Google Scholar 

  81. A.R. Kamali. D.J. Fray, Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)

    Article  CAS  Google Scholar 

  82. A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)

    Article  CAS  Google Scholar 

  83. A.R. Kamali, Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. 18, 1952–1964 (2016)

    Article  CAS  Google Scholar 

  84. A.R. Kamali, Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere. J. Ind. Eng. Chem. 52, 18–27 (2017)

    Article  CAS  Google Scholar 

  85. Z. He, L. Gao X. Wang, B. Zhang, W. Qi, J. Song et al., Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72, 304–311 (2014)

    Article  CAS  Google Scholar 

  86. X. Jin, R. He, S. Dai, Electrochemical graphitization: an efficient conversion of amorphous carbons to nanostructured graphites. Chem. Eur. J. 23, 11455–11459 (2017)

    Article  CAS  Google Scholar 

  87. P.J.F. Harris, Structure of non-graphitising carbons. Int. Mater. Rev. 42, 206–218 (1997)

    Article  CAS  Google Scholar 

  88. K. Jurkiewicz, M. Pawlyta, D. Zygadło, D. Chrobak, S. Duber, R. Wrzalik, A. Ratuszna, A. Burian, Evolution of glassy carbon under heat treatment: Correlation structure–mechanical properties. J. Mater. Sci. 53, 3509–3523 (2018)

    Article  CAS  Google Scholar 

  89. D.W. Kim, H.S. Kil, J. Kim, I. Mochida, K. Nakabayashi, C.K. Rhee et al., Highly graphitized carbon from non-graphitizable raw material and its formation mechanism based on domain theory. Carbon 121, 301–308 (2017)

    Article  CAS  Google Scholar 

  90. J. Peng, N. Chen, R. He, Z. Wang, S. Dai, X. Jin, Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew. Chem. 129, 1777–1781 (2017)

    Article  Google Scholar 

  91. D. Tang, H. Yin, X. Cheng, W. Xiao, D. Wang, Green production of nickel powder by electro-reduction of NiO in molten Na2CO3–K2CO3. Int. J. Hydrog. Energy 41, 18699–18705 (2016)

    Article  CAS  Google Scholar 

  92. F.G. Emmerich, Evolution with heat treatment of crystallinity in carbons. Carbon 33, 1709–1715 (1995)

    Article  CAS  Google Scholar 

  93. B. Xu, H. Wang, Q. Zhu, N. Sun, B. Anasori, L. Hu et al., Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater. 12, 128–136 (2018)

    Article  Google Scholar 

  94. A. Rani, S. Nam, K.A. Oh, M. Park, Electrical conductivity of chemically reduced graphene powders under compression. Carbon Lett. 11, 90–95 (2010)

    Article  Google Scholar 

  95. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  96. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 193, 49–60 (2015)

    Article  CAS  Google Scholar 

  97. Y. Zhang, L. Ren, S. Wang, A. Marathe, J. Chaudhuri, G. Li, Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)

    Article  CAS  Google Scholar 

  98. Y. Zhang, S. Wang, L. Li, K. Zhang, J. Qiu, M. Davis et al., Tuning electrical conductivity and surface area of chemically-exfoliated graphene through nanocrystal functionalization. Mater. Chem. Phys. 135, 1057–1063 (2012)

    Article  CAS  Google Scholar 

  99. V. Skákalová, P. Kotrusz, M. Jergel, T. Susi, A. Mittelberger, V. Vretenár et al., Chemical oxidation of graphite: evolution of the structure and properties. J. Phys. Chem. C 122(208), 929–935 (2017)

    Article  CAS  Google Scholar 

  100. L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström et al., Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9, 9562–9571 (2017)

    Article  CAS  Google Scholar 

  101. J. Zhang, L. Xu, B. Zhou, Y. Zhu, X. Jiang, The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J. Colloid Interface Sci. 513, 279–286 (2018)

    Article  CAS  Google Scholar 

  102. A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014)

    Article  CAS  Google Scholar 

  103. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010)

    Article  CAS  Google Scholar 

  104. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  CAS  Google Scholar 

  105. J.W.F. To, Z. Chen, H. Yao, J. He, K. Kim, H.H. Chou et al., Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent. Sci. 1, 68–76 (2015)

    Article  CAS  Google Scholar 

  106. G. Ramos-Fernandez, M. Canal-Rodríguez, A. Arenillas, J.A. Menendez, I. Rodríguez-Pastor, I. Martin-Gullon, Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors. Carbon 126, 456–463 (2018)

    Article  CAS  Google Scholar 

  107. M. Canal-Rodríguez, A. Arenillas, N. Rey-Raap, G. Ramos-Fernandez, I. Martín-Gullon, I., Angel Menendez, J. Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors, Carbon 118, 291–298 (2017)

    Article  CAS  Google Scholar 

  108. F. Sun, L. Wang, Y. Peng, J. Gao, X. Pi, Z. Qu et al., Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Appl. Surf. Sci. 436, 486–494 (2018)

    Article  CAS  Google Scholar 

  109. D. Pantea, H. Darmstadt, S. Kaliaguine, C. Roy, Electrical conductivity of conductive carbon blacks: Influence of surface chemistry and topology. Appl. Surf. Sci. 217, 181–193 (2003)

    Article  CAS  Google Scholar 

  110. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  111. X. Geng, L. Li, M. Zhang, B. An, X. Zhu, Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell. J. Environ. Sci. 25, 110–117 (2013)

    Article  Google Scholar 

  112. L. Weinstein, R. Dash, Supercapacitor carbons. Mater. Today 16, 356–357 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, A. (2020). Molten Salt Conversion of Plastics into Highly Conductive Carbon Nanostructures. In: Green Production of Carbon Nanomaterials in Molten Salts and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-15-2373-1_7

Download citation

Publish with us

Policies and ethics