Skip to main content

Production of Advanced Materials in Molten Salts

  • Chapter
  • First Online:

Abstract

Molten salt-based methods have been prime candidates for the commercial extraction of a variety of metals, such as aluminum and lithium, which are impossible or very difficult to be produced by other techniques. In addition to these well-developed technologies, molten salt methods have also created new strategies for the preparation of advanced metallic, intermetallic and ceramic materials as well as carbon nanostructures. This chapter focuses on the latter. In contact with carbonaceous materials, molten salts can either be relatively inert or reactive. Both behaviors have been employed for the preparation of carbon nanomaterials. An inert molten salt system can provide a uniform ionically conductive heating medium for the occurrence of reactions with an enhanced reactivity, leading to a significant promotion of reaction kinetics. This promoting influence is mainly due to the enhanced values of the diffusion coefficient of ions in molten salts. In contrast, there are some molten salt methods in which the molten salt involved is reactive against solid or gaseous carbonaceous species, leading to the preparation of a variety of different carbon nanostructures. Molten salt reduction of graphene oxides and the electrochemical exfoliation of graphite are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Alamdari, Aluminum production process: Challenges and opportunities. Metals 7, 133 (2017)

    Article  CAS  Google Scholar 

  2. H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks. Appl. Energ. 110, 252–266 (2013)

    Article  CAS  Google Scholar 

  3. G.J. Kipouros, D.R. Sadoway, Toward new technologies for the production of lithium. JOM 50, 24–33 (1998)

    CAS  Google Scholar 

  4. G. Demirci, I. Karakaya, Collection of magnesium in an Mg–Pb alloy cathode placed at the bottom of the cell in MgCl2 electrolysis. J. Alloys Compd. 439, 237–242 (2007)

    Article  CAS  Google Scholar 

  5. F.C. Frary, H.R. Bicknell, C.A. Tronson, Efficiency in the electrolytic production of metallic calcium. Ind. Eng. Chem. 2, 522–524 (1910)

    Article  Google Scholar 

  6. G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361–364 (2000)

    Article  CAS  Google Scholar 

  7. D.S.M. Vishnu, N. Sanil, K.S. Mohandas, K. Nagarajan, Factors influencing the direct electrochemical reduction of Nb2O5 pellets to Nb metal in molten chloride salts. Acta Metall. Sin. 30, 218–227 (2016)

    Article  CAS  Google Scholar 

  8. X. Ge, S. Jin, M. Zhang, X. Wang, S. Seetharaman, Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method. J. Min. Metall. B 51, 185–191 (2015)

    Article  CAS  Google Scholar 

  9. R. Abdulaziz, L.D. Brown, D. Inman, S. Simons, P.R. Shearing, D.J.L. Brett, Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl–KCl eutectic. Electrochem. Commun. 41, 44–46 (2014)

    Article  CAS  Google Scholar 

  10. L.D. Brown, R. Abdulaziz, R. Jervis, V. Bharath, T.J. Mason, R.C. Atwood, C. Reinhard, L.D. Connor, D. Inman, D.J.L. Brett, P.R. Shearing, A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation. J. Synchrotron Rad. 24, 439–444 (2017)

    Article  CAS  Google Scholar 

  11. D. Tang, H. Yin, X. Cheng, W. Xiao, D. Wang, Green production of nickel powder by electro-reduction of NiO in molten Na2CO3–K2CO3. Int. J. Hydrogen Energy 41, 18699–18705 (2016)

    Article  CAS  Google Scholar 

  12. K. Xie, A.R. Kamali, Electro-reduction of hematite using water as the redox mediator. Green Chem. Green Chem. 21, 198–204 (2019)

    Article  CAS  Google Scholar 

  13. Y. Xu, H. Jiao, M. Wang, S. Jiao, Direct preparation of V–Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode. J. Alloy. Compd. 779, 22–29 (2019)

    Article  CAS  Google Scholar 

  14. J. Zhao, S. Lu, L. Hu, C. Li, Nano Si preparation by constant cell voltage electrolysis of FFC-Cambridge Process in molten CaCl2. J. Energy Chem. 22, 819–825 (2013)

    Article  CAS  Google Scholar 

  15. S. Li, X. Zou, K. Zheng, X. Ua, Q. Xu, C. Chen, Z. Zhou, Direct production of TiAl3 from Ti/Al-containing oxides precursors by solid oxide membrane (SOM) process. J. Alloys Compd. 727, 1243–1252 (2017)

    Article  CAS  Google Scholar 

  16. H. Liu, Y. Cai, Q. Xu, Q. Song, H. Liu, A novel preparation of Zr–Si intermetallics by electrochemical reduction of ZrSiO4 in molten salts. New J. Chem. 39, 9969–9975 (2015)

    Article  CAS  Google Scholar 

  17. H. Liu, Y. Cai, Q. Xu, H. Liu, Q. Song, Y. Qi, In situ nano-sized ZrC/ZrSi composite powder fabricated by a one-pot electrochemical process in molten salts. RSC Adv. 7, 2301–2307 (2017)

    Article  CAS  Google Scholar 

  18. M. Anik, N.B. Hatirnaz, A.B. Aybar, Molten salt synthesis of La(Ni1–xCox)5 (x = 0, 0.1, 0.2, 0.3) type hydrogen storage alloys, Int. J. Hydrogen Energy 41, 361–368 (2016)

    Google Scholar 

  19. A.R. Kamali, G. Divitini, C. Ducati, D.J. Fray, Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceram. Int. 40, 8533–8538 (2014)

    Article  CAS  Google Scholar 

  20. A.R. Kamali, D.J. Fray, Solid phase growth of tin oxide nanostructures. Mater. Sci. Eng., B 177, 819–825 (2012)

    Article  CAS  Google Scholar 

  21. A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)

    Article  CAS  Google Scholar 

  22. A.M. Abdelkader, Molten salts electrochemical synthesis of Cr2AlC. J. Eur. Ceram. Soc. 36, 33–42 (2016)

    Article  CAS  Google Scholar 

  23. Z.W. Cui, X.K. Li, Y. Cong, Z.J. Dong, G.M. Yuan, J. Zhang, Synthesis of tantalum carbide from multiwall carbon nanotubes in a molten salt medium. New Carbon Mater. 32, 205–212 (2017)

    Article  Google Scholar 

  24. Z. Yu, X. Wang, Y.N. Hou, X. Pan, Z. Zhao, J. Qiu, Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon 117, 376–382 (2017)

    Article  CAS  Google Scholar 

  25. X. Li, A. Westwood, A. Brown, R. Brydson, B. Rand, A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media. Carbon 47, 201–208 (2009)

    Article  CAS  Google Scholar 

  26. X. Zheng, X. Cao, X. Li, J. Tian, C. Jin, R. Yang, Biomass lysine-derived nitrogen-doped carbon hollow cubes via a NaCl crystal template: an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 9, 1059–1067 (2017)

    Article  CAS  Google Scholar 

  27. C. Nita. M. Bensafia, C.L. Vaulot, L. Delmotte, C.M. Ghimbeu, Insights on the synthesis mechanism of green phenolic resin derived porous carbons via a salt-soft templating approach, Carbon 109, 227–238 (2016)

    Article  CAS  Google Scholar 

  28. W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S. Chen, X. Qi, Z. Wei, Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5414–5420 (2015)

    Article  CAS  Google Scholar 

  29. G.J. Janz, Molten Salts Handbook, 1st edn, (Academic Press, 1967)

    Google Scholar 

  30. A.R. Kamali, D.J. Fray, Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)

    Article  CAS  Google Scholar 

  31. J. Sure, A.R. Shankar, S. Ramya, C. Mallika, U.K. Mudali, Corrosion behaviour of carbon materials exposed to molten lithium chloride–potassium chloride salt. Carbon 67, 643–655 (2014)

    Article  CAS  Google Scholar 

  32. Z. He, L. Gao, X. Wang, B. Zhang, W. Qi, J. Song et al., Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72, 304–311 (2014)

    Article  CAS  Google Scholar 

  33. X. Mao, Z. Yan, T. Sheng, M. Gao, H. Zhu, W. Xiao, D. Wang, Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts. Carbon 111, 162–172 (2017)

    Article  CAS  Google Scholar 

  34. X. Liu, M. Antonietti, Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69, 460–466 (2014)

    Article  CAS  Google Scholar 

  35. J. Zang, Temperature tuned carbon morphologies derived from flexible graphite sheets in KNO3 molten salt. Carbon 98, 221–224 (2016)

    Article  CAS  Google Scholar 

  36. H. Honda, K. Egi, S. Toyoda, Y. Sanada, T. Furuta, Electronic properties of heat treated coals. Carbon 1, 155–164 (1964)

    Article  CAS  Google Scholar 

  37. D. Gonzalez, M.A. Montes-Moran, R.J. Young, A.B. Garcia, Effect of temperature on the graphitization process of a semianthracite. Fuel Process. Technol. 79, 245–250 (2002)

    Article  CAS  Google Scholar 

  38. X. Li, G. Yuan, A. Brown, A. Westwood, R. Brydson, B. Rand, The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. Carbon 44, 1699–1705 (2006)

    Article  CAS  Google Scholar 

  39. H.V. Ijije, R.C. Lawrence, G.Z. Chen, Carbon electrodeposition in molten salts: Electrode reactions and applications. RSC Adv. 4, 35808 (2014)

    Article  CAS  Google Scholar 

  40. C.K. Byun, S.J. Kwon, H.B. Im, H.S. Ahn, H.J. Ryu, K.B. Yi, Novel method for investigation of a K-Mg-based CO2 sorbent for sorption-enhanced water–gas shift reaction. Renew. Energy 87, 415–421 (2016)

    Article  CAS  Google Scholar 

  41. C.H. Lee, S. Mun, K.B. Lee, Characteristics of Na–Mg double salt for high-temperature CO2 sorption. Chem. Eng. J. 258, 367–373 (2014)

    Article  CAS  Google Scholar 

  42. H. Wu, Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, J. Ren, M. Lefler, B. Wang, S. Licht, One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts. Carbon 106, 208–217 (2016)

    Article  CAS  Google Scholar 

  43. M. Liu, C. Vogt, A.L. Chaffee, S.L.Y. Chang, Nanoscale Structural Investigation of Cs2CO3-Doped MgO Sorbent for CO2 capture at moderate temperature. J. Phys. Chem. C 117, 17514–17520 (2013)

    Article  CAS  Google Scholar 

  44. H.S. Nygårda, V. Tomkuteb, E. Olsena, Kinetics of CO2 absorption by calcium looping in molten halide salts. Energ. Procedia 114, 250–258 (2017)

    Article  CAS  Google Scholar 

  45. I.A. Novoselova, S.V. Kuleshov, S.V. Volkov, V.N. Bykov, Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim. Acta 211, 343–355 (2016)

    Article  CAS  Google Scholar 

  46. L. Hu, Y. Song, J. Ge, J. Zhu, Z. Han, S. Jiao, Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts. J. Mater. Chem. A 5, 6219–6225 (2017)

    Article  CAS  Google Scholar 

  47. L. Hu, Y. Song, J. Ge, J. Zhu, S. Jiao, Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts. J. Mater. Chem. A 3, 21211–21218 (2015)

    Article  CAS  Google Scholar 

  48. A.R. Kamali, Nanocatalytic conversion of CO2 into nanodiamonds. Carbon 123, 205–215 (2017)

    Article  CAS  Google Scholar 

  49. W. Weng, L. Tang, W. Xiao, Capture and electro-splitting of CO2 in molten salts. J. Energy Chem. 28, 128–143 (2019)

    Article  Google Scholar 

  50. M.B. Jensen, L.G.M. Pettersson, O. Swang, U. Olsbye, CO2 sorption on MgO and CaO surfaces: A comparative quantum chemical cluster study. J. Phys. Chem. B 109, 16774–16781 (2005)

    Article  CAS  Google Scholar 

  51. D. Cornu, H. Guesmi, J.M. Krafft, H.L. Pernot, Lewis Acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches. J. Phys. Chem. C 116, 6645–6654 (2012)

    Article  CAS  Google Scholar 

  52. S. Kumar, S.K. Saxena, A comparative study of CO2 sorption properties for different oxides. Mater. Renew. Sustain. Energy 30, 1–15 (2014)

    Article  Google Scholar 

  53. G.B. Elvira, G.C. Francisco, S.M. Víctor, M.L.R. Alberto, MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance. J. Environ. Sci. 57, 418–428 (2017)

    Article  Google Scholar 

  54. Y. Qiao, J. Wang, Y. Zhang, W. Gao, T. Harada, L. Huang, T.A. Hatton, Q. Wang, Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: Optimization of the Li/Na/K ratio. Ind. Eng. Chem. Res. 56, 1509–1517 (2017)

    Article  CAS  Google Scholar 

  55. A.T. Vu, Y. Park, P.R. Jeon, C.H. Lee, Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures. Chem. Eng. J. 258, 254–264 (2014)

    Article  CAS  Google Scholar 

  56. W. Gao, T. Zhou, Y. Gao, B. Louis, D. O’Harec, Q. Wang, Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review. J. Energy Chem. 26, 830–838 (2017)

    Article  Google Scholar 

  57. J.H. Kang, T. Kim, J. Choi, J. Park, Y.S. Kim, M.S. Chang, H. Jung, K.T. Park, S.J. Yang, C.R. Park, Hidden second oxidation step of hummers method. Chem. Mater. 28, 756–764 (2016)

    Article  CAS  Google Scholar 

  58. A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation. ACS Nano 8, 3060–3068 (2014)

    Article  CAS  Google Scholar 

  59. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009)

    Article  CAS  Google Scholar 

  60. M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nature Rev. 1(1), 1–14 (2016)

    Google Scholar 

  61. G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015)

    Article  CAS  Google Scholar 

  62. M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: A review. Mater. Res. Bull. 59, 323–328 (2014)

    Article  CAS  Google Scholar 

  63. C.K. Chua, Martin Pumera, Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)

    Article  CAS  Google Scholar 

  64. X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114, 832–842 (2010)

    Article  CAS  Google Scholar 

  65. M. Ghorbani, H. Abdizadeh, M.R. Golobostanfard, Reduction of graphene oxide via modified hydrothermal method. Procedia Mater. Sci. 11, 326–330 (2015)

    Article  CAS  Google Scholar 

  66. K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Article  CAS  Google Scholar 

  67. Songfeng Pei, Hui-Ming Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  68. H.C. Schniwpp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prudhomme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)

    Article  CAS  Google Scholar 

  69. A.M. Abdelkader, C. Valles, A.J. Cooper, I.A. Kinloch, R.A.W. Dryfe, Alkali reduction of graphene oxide in molten halide salts: Production of corrugated graphene derivatives for high-performance supercapacitors. ACSNano 8, 11225–11233 (2014)

    CAS  Google Scholar 

  70. J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang, L. Shen, H. Dou, X. Zhang, A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255–261 (2016)

    Article  CAS  Google Scholar 

  71. P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20, 329–338 (2015)

    Article  CAS  Google Scholar 

  72. J.M. Munuera, J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. Carbon 115, 625–628 (2017)

    Article  CAS  Google Scholar 

  73. L. Hu, X. Peng, Y. Li, L. Wang, K. Huo, L.Y.S. Lee, K.Y. Wong, P.K. Chu, Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy 34, 515–523 (2017)

    Article  CAS  Google Scholar 

  74. A.T. Najafabadi, E. Gyenge, High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)–acetonitrile electrolyte with low IL content. Carbon 71, 58–69 (2014)

    Article  CAS  Google Scholar 

  75. Y. Zhang, Y. Xu, J. Zhu, L. Li, X. Du, X. Sun, Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors. Carbon 127, 392–403 (2018)

    Article  CAS  Google Scholar 

  76. C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussai, Electrochemical approaches to the production of graphene flakes and their potential applications, Carbon 54, 1–21 (2013)

    Article  CAS  Google Scholar 

  77. H. Lei, J. Tu, Z. Yu, S. Jiao, Exfoliation mechanism of graphite cathode in ionic liquids. ACS Appl. Mater. Interfaces. 9, 36702–36707 (2017)

    Article  CAS  Google Scholar 

  78. W. Wu, C. Zhang, S. Hou, Electrochemical exfoliation of graphene and graphene analogous 2D nanosheets. J. Mater. Sci. 52, 10649–10660 (2017)

    Article  CAS  Google Scholar 

  79. A.R. Kamali C. Schwandt, D.J. Fray, Effect of the graphite electrode material on the characteristics, Mater. Charact. 62, 987–994 (2011)

    Google Scholar 

  80. A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)

    Article  CAS  Google Scholar 

  81. A. Rezaei, A.R. Kamali, Green production of carbon nanomaterials in molten salts, mechanisms and applications. Diam. Relat. Mater. 83, 146–161 (2018)

    Article  CAS  Google Scholar 

  82. A.R. Kamali, D.J. Fray, Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J. Mater. Sci. 51, 569–576 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, A. (2020). Production of Advanced Materials in Molten Salts. In: Green Production of Carbon Nanomaterials in Molten Salts and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-15-2373-1_2

Download citation

Publish with us

Policies and ethics