Skip to main content

Pelargonidin, a Dietary Anthocyanidin in the Prevention of Colorectal Cancer and Its Chemoprotective Mechanisms

  • Chapter
  • First Online:

Abstract

Diseases of bowl wall mucosa stemming from sudden mutation lead to the development of colorectal cancer (CRC) cells by the transformation of normal epithelial cells into neoplastic lesions. CRC is considered to be a global burden; hence, its incidence rate is expeditiously increased up to ten-fold higher, worldwide. The epidemiological report pinpointed CRC as the utmost third common malignancy in men and second in women. Because of greater efficacy, the synthetic drugs are unsatisfactory due to higher toxic effects to the normal cells, and a chance of developing multidrug resistance by tumor cells. Therefore, dietary flavonoids with potent anticarcinogenic effects have been focused on recent investigations. Pelargonidin (PD), a bioactive molecule classified under anthocyanidin is present in red and pink pigmented berries. PD efficiently modulates intercellular antioxidant status, thereby reducing oxidative DNA damage, cellular proliferation, differentiation, apoptosis, angiogenesis, and reverse drug resistance of metastatic cells, and potentially induces cell cycle arrest, thereby interfering in colorectal carcinogenesis. PD scavenges and normalizes the intracellular reactive oxygen species (ROS), which results in gene mutation and induction of colon carcinogenesis. Therefore, the proliferation of tumor cells would be affected or blocked potentially due to disturbance in cell cycle protein by these ROS. Considering the wide pharmacological benefits of PD, this chapter deliberately reviews the cumulative research data from in vitro human colon cancer cell line studies on chemoprotective property of PD against CRC, and also summarizes the underlying mechanism in experimental models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham SK, Schupp N, Schmid U, Stopper H (2007) Antigenotoxic effects of the phytoestrogen pelargonidin chloride and the polyphenol chlorogenic acid. Mol Nutri Food Res 51(7):880–887

    CAS  Google Scholar 

  • Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17(20):2481–2495

    CAS  PubMed  Google Scholar 

  • Akhtar MS, Swamy MK (eds) (2018) Anticancer plants: properties and application. Springer, Singapore

    Google Scholar 

  • Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691

    Google Scholar 

  • Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takkikto M, Hewitt S, Lee EL, Dashwood R, Smoot D (2009) Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 54(10):2109

    CAS  PubMed  Google Scholar 

  • Aswar M, Aswar U, Wagh A, Watkar B, Vyas M, Gujar KN (2008) Antimicrobial activity of Ficus benghalensis. Pharmacol Online 2:715–725

    Google Scholar 

  • Augusti K, Daniel RS, Cherian S, Sheela C, Nair C (1994) Effect of leucopelargonin derivative from Ficus bengalensis Linn. on diabetic dogs. Ind J Med Res 99:82–86

    CAS  Google Scholar 

  • Bardhan K, Liu K (2013) Epigenetics and colorectal cancer pathogenesis. Cancers 5(2):676–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes JS, Schug KA (2011a) Structural characterization of cyanidin-3,5-diglucoside and pelargonidin-3,5-diglucoside anthocyanins: Multi-dimensional fragmentation pathways using high performance liquid chromatography-electrospray ionization-ion trap-time of flight mass spectrometry. Int J Mass Spectrom 308(1):71–80

    CAS  Google Scholar 

  • Beekwilder J, Jonker H, Meesters P, Hall RD, van der Meer IM, Ric de Vos C (2005) Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem 53(9):3313–3320

    Google Scholar 

  • Bruyère C, Meijer L (2013) Targeting cyclin-dependent kinases in anti-neoplastic therapy. Curr Opin Cell Biol 25(6):772–779

    PubMed  Google Scholar 

  • Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutri 40(3):113–120

    CAS  Google Scholar 

  • Čipak gašparović A, Lovaković T, Žarković N (2010) Oxidative stress and antioxidants: biological response modifiers of oxidative homeostasis in cancer. Period Biol 112(4):433–439

    Google Scholar 

  • Datir SS (2018) Plant metabolites as new leads to anticancer drug discovery: approaches and challenges. In: Anticancer plants: natural products and biotechnological implements. Springer, Singapore, pp 141–161

    Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64(5–6):1019–1026

    CAS  PubMed  Google Scholar 

  • Ďuračková Z (2010) Some current insights into oxidative stress. Physiol Res 59(4)

    Google Scholar 

  • Felgines C, Talavera S, Texier O, Gil-Izquierdo A, Lamaison J-L, Remesy C (2005) Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agricult Food Chem 53(20):7721–7727

    CAS  Google Scholar 

  • Felgines C, Texier O, Besson C, Lyan B, Lamaison J-L, Scalbert A (2007) Strawberry pelargonidin glycosides are excreted in urine as intact glycosides and glucuronidated pelargonidin derivatives in rats. Br J Nutri 98(6):1126–1131

    CAS  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    CAS  Google Scholar 

  • Ferretti G, Bacchetti T, Belleggia A, Neri D (2010) Cherry antioxidants: from farm to table. Molecules 15(10):6993–7005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67(10):1581–1588

    CAS  PubMed  Google Scholar 

  • Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC (1986) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Rad Res Commun 1(3):163–172

    CAS  Google Scholar 

  • Frank T, Netzel M, Strass G, Bitsch R, Bitsch I (2003) Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol 81(5):423–435

    CAS  PubMed  Google Scholar 

  • Gingras D, Béliveau R (2011) Colorectal cancer prevention through dietary and lifestyle modifications. Cancer Microenviron 4(2):133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, Singh KK (2010) NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 10(3):223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724

    CAS  PubMed  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflam 2007:1–10

    Google Scholar 

  • Hippeli S, Heiser I, Elstner EF (1999) Activated oxygen and free oxygen radicals in pathology: new insights and analogies between animals and plants. Plant Physiol Biochem 37(3):167–178

    CAS  Google Scholar 

  • Hou D-X, Yanagita T, Uto T, Masuzaki S, Fujii M (2005) Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure–activity relationship and molecular mechanisms involved. Biochem Pharmacol 70(3):417–425

    CAS  PubMed  Google Scholar 

  • Jass JR (2007) Molecular heterogeneity of colorectal cancer: implications for cancer control. Surg Oncol 16:7–9

    Google Scholar 

  • Karthi N, Kalaiyarasu T, Kandakumar S, Mariyappan P, Manju V (2016) Pelargonidin induces apoptosis and cell cycle arrest via a mitochondria mediated intrinsic apoptotic pathway in HT29 cells. RSC Adv 6(51):45064–45076

    CAS  Google Scholar 

  • Klaunig JE, Wang Z, Pu X, Zhou S (2011) Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254(2):86–99

    CAS  Google Scholar 

  • Lee K-J, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S, Group JS (2007) Physical activity and risk of colorectal cancer in Japanese men and women: the Japan Public Health Center-Based Prospective Study. Cancer Causes Contr 18(2):199–209

    Google Scholar 

  • Mahomoodally MF, Gurib-Fakim A, Subratty AH (2005) Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharm Biol 43(3):237–242

    Google Scholar 

  • Miller PE, Lazarus P, Lesko SM, Cross AJ, Sinha R, Laio J, Zhu J, Harper G, Muscat JE, Hartman TJ (2013) Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutri Cancer 65(2):202–226

    CAS  Google Scholar 

  • Mullen W, Edwards CA, Serafini M, Crozier A (2008) Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J Agri Food Chem 56(3):713–719

    CAS  Google Scholar 

  • Neergheen VS, Bahorun T, Taylor EW, Jen L-S, Aruoma OI (2010) Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278(2):229–241

    CAS  PubMed  Google Scholar 

  • Nikkhah E, Khayami M, Heidari R (2008) In vitro screening for antioxidant activity and cancer suppressive effect of Blackberry (Morus nigra). Iran J Cancer Prev 1:167–172

    Google Scholar 

  • Noda N, Wakasugi H (2001) Cancer and oxidative stress. Jpn Med Ass J 44(12):535–539

    Google Scholar 

  • Nosho K, Irahara N, Shima K, Kure S, Kirkner GJ, Schernhammer ES, Hazra A, Hunter DJ, Quackenbush J, Spiegelman D (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3(11):e3698

    PubMed  PubMed Central  Google Scholar 

  • Ouakrim DA, Pizot C, Boniol M, Malvezzi M, Boniol M, Negri E, Bota M, Jenkins MA, Bleiberg H, Autier P (2015) Trends in colorectal cancer mortality in Europe: retrospective analysis of the WHO mortality database. BMJ 351:h4970

    Google Scholar 

  • Palou G, Palou R, Guerra-Moreno A, Duch A, Travesa A, Quintana DG (2010) Cyclin regulation by the s phase checkpoint. J Biol Chem 285(34):26431–26440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pergola C, Rossi A, Dugo P, Cuzzocrea S, Sautebin L (2006) Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 15(1):30–39

    CAS  PubMed  Google Scholar 

  • Pradelli L, Beneteau M, Chauvin C, Jacquin M, Marchetti S, Munoz-Pinedo C, Auberger P, Pende M, Ricci J (2010) Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29(11):1641

    CAS  PubMed  Google Scholar 

  • Raju J, Patlolla JM, Swamy MV, Rao CV (2004) Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol Prevent Biomarkers 13(8):1392–1398

    CAS  Google Scholar 

  • Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutri Biochem 18(7):427–442

    CAS  Google Scholar 

  • Ravichandra VD, Ramesh C, Swamy MK, Purushotham B, Rudramurthy GR (2018) Anticancer plants: chemistry, pharmacology, and potential applications. In: Anticancer plants: properties and application. Springer, Singapore, pp 485–515

    Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Rad Biol Med 49(11):1603–1616

    CAS  PubMed  Google Scholar 

  • Singh A, Tripathi P (2018) Potential of natural products for the prevention of oral cancer. In: Anticancer plants: natural products and biotechnological implements. Springer, Singapore, pp 41–66

    Google Scholar 

  • Sivalokanathan S, Ilayaraja M, Balasubramanian MP (2006) Antioxidant activity of Terminalia arjuna bark extract on N-nitrosodiethylamine induced hepatocellular carcinoma in rats. Mol Cell Biochem 281(1–2):87

    CAS  Google Scholar 

  • Smith A, Simanski S, Fallahi M, Ayad NG (2007) Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry. Cell Cycle 6(22):2795–2799

    CAS  PubMed  Google Scholar 

  • Tanaka T (2009) Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinogen 8:5

    Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    PubMed  Google Scholar 

  • Tsuda T, Horio F, Uchida K, et al. (2003) Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133(7):2125–2130.

    Google Scholar 

  • Valadez-Vega C, Delgado-Olivares L, González JAM, García EA, Ibarra JRV, Moreno ER, Gutiérrez MS, Martínez MTS, Clara ZP, Ramos ZC (2013) The role of natural antioxidants in cancer disease. In: Oxidative stress and chronic degenerative diseases-a role for antioxidants. IntechOpen, London.

    Google Scholar 

  • Wang H, Nair MG, Strasburg GM, Chang Y-C, Booren AM, Gray JI, DeWitt DL (1999) Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62(2):294–296

    CAS  PubMed  Google Scholar 

  • Wang JJ, Shi QH, Zhang W, Sanderson BJ (2012) Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food Chem Toxicol 50(9):3004–3013

    CAS  PubMed  Google Scholar 

  • Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54(11):4069–4075

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaiyapuri, M. et al. (2020). Pelargonidin, a Dietary Anthocyanidin in the Prevention of Colorectal Cancer and Its Chemoprotective Mechanisms. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-2361-8_6

Download citation

Publish with us

Policies and ethics