Skip to main content

Normal Physiology of Renal System

  • Chapter
  • First Online:
Brain and Kidney Crosstalk

Abstract

Renal system is a vital organ system for survival. This chapter focuses initially on its functional anatomy followed by the detailed review of important function of kidney, namely filtration, transport across tubules, urine concentration, regulation of acid base balance, control of blood volume and composition and secretion of hormones. In the end, we discuss the basics of physiology of micturition and disorders associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud FM, Floras JS, Aylward PE, Guo GB, Gupta BN, Schmid PG (1990) Role of vasopressin in cardiovascular and blood pressure regulation. Blood Vessels 27(2–5):106–115

    CAS  PubMed  Google Scholar 

  • Acharya V, Olivero J (2018) The kidney as an endocrine organ. Methodist Debakey Cardiovasc J 14(4):305–307

    PubMed  PubMed Central  Google Scholar 

  • Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Phys 251(5 Pt 2):F904–F910

    CAS  Google Scholar 

  • Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30(5 Suppl):S198–S206

    CAS  PubMed  Google Scholar 

  • Alpern R, Caplan M, Moe OW (2012) Seldin and Giebisch’s. The kidney, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Amemiya M, Tabei K, Kusano E, Asano Y, Alpern RJ (1999) Incubation of OKP cells in low-K+ media increases NHE3 activity after early decrease in intracellular pH. Am J Phys 276(3):C711–C716

    CAS  Google Scholar 

  • Andersson K-E, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986

    CAS  PubMed  Google Scholar 

  • Andreucci VE, Herrera-Acosta J, Rector FC, Seldin DW (1971) Effective glomerular filtration pressure and single nephron filtration rate during hydropenia, elevated ureteral pressure, and acute volume expansion with isotonic saline. J Clin Invest 50(10):2230–2234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM (2004) Neuroendocrine control of body fluid metabolism. Physiol Rev 84(1):169–208

    CAS  PubMed  Google Scholar 

  • Arendshorst WJ, Brännström K, Ruan X (1999) Actions of angiotensin II on the renal microvasculature. J Am Soc Nephrol 10(Suppl 11):S149–S161

    CAS  PubMed  Google Scholar 

  • Barajas L (1979) Anatomy of the juxtaglomerular apparatus. Am J Phys 237(5):F333–F343

    CAS  Google Scholar 

  • Barajas L, Liu L, Powers K (1992) Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 70(5):735–749

    CAS  PubMed  Google Scholar 

  • Bastl CP, Hayslett JP (1992) The cellular action of aldosterone in target epithelia. Kidney Int 42(2):250–264

    CAS  PubMed  Google Scholar 

  • Berliner RW, Levinsky NG, Davidson DG, Eden M (1958) Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24(5):730–744

    CAS  PubMed  Google Scholar 

  • Bhaskar A, Oommen V (2018) A simple model for demonstrating the factors affecting glomerular filtration rate. Adv Physiol Educ 42(2):380–382

    PubMed  Google Scholar 

  • Boron WF, Boulpaep EL (2016) Textbook of medical physiology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1(4 Pt 1):335–347

    CAS  PubMed  Google Scholar 

  • Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990 Jul) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70(3):665–699

    CAS  Google Scholar 

  • Brewster UC, Setaro JF, Perazella MA (2003) The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 326(1):15–24

    PubMed  Google Scholar 

  • Brooks DP (1997) Endothelin: the “prime suspect” in kidney disease. Physiology 12(2):83–89

    CAS  Google Scholar 

  • Burke M, Pabbidi MR, Farley J, Roman RJ (2014) Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 12(6):845–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang C-L (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A 105(28):9805–9810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9(9):1627–1638

    CAS  PubMed  Google Scholar 

  • Darnell JE (1997) STATs and gene regulation. Science 277(5332):1630–1635

    CAS  PubMed  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94

    Google Scholar 

  • DiBona GF (1989) Neural control of renal function: cardiovascular implications. Hypertension 13(6 Pt 1):539–548

    CAS  PubMed  Google Scholar 

  • DiBona GF (2003) Central angiotensin modulation of baroreflex control of renal sympathetic nerve activity in the rat: influence of dietary sodium. Acta Physiol Scand 177(3):285–289

    CAS  PubMed  Google Scholar 

  • DiBona GF (2005 Mar) Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function. Exp Physiol 90(2):159–161

    PubMed  Google Scholar 

  • DiBona GF, Sawin LL (1985) Renal nerve activity in conscious rats during volume expansion and depletion. Am J Phys 248(1 Pt 2):F15–F23

    CAS  Google Scholar 

  • Drinkhill MJ, McMahon NC, Hainsworth R (1996) Delayed sympathetic efferent responses to coronary baroreceptor unloading in anaesthetized dogs. J Physiol 497(Pt 1):261–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19(5):608–624

    CAS  PubMed  Google Scholar 

  • Eaton DC, Pooler JP (2016) Chapter 4: basic transport mechanisms. In: Vander’s renal physiology, 8th edn. McGraw-Hill Education, New York, pp 47–57

    Google Scholar 

  • Eaton DC, Pooler JP (2018a) Vander’s renal physiology, 9th edn. McGraw-Hill Medical, New York, pp 32–33. Chapter 2

    Google Scholar 

  • Eaton DC, Pooler JP (2018b) Vander’s renal physiology, 9th edn. McGraw-Hill Medical, New York, p 85. Chapter 6

    Google Scholar 

  • Eaton DC, Pooler JP (2018c) Vander’s renal physiology, 9th edn. McGraw-Hill Medical, New York

    Google Scholar 

  • Edvardsen P (1968) Nervous control of urinary bladder in cats. I. The collecting phase. Acta Physiol Scand 72(1):157–171

    CAS  PubMed  Google Scholar 

  • Edvarsen P (1968) Nervous control of urinary bladder in cats. II. The expulsion phase. Acta Physiol Scand 72(1):172–182

    CAS  PubMed  Google Scholar 

  • Eppel GA, Malpas SC, Denton KM, Evans RG (2004) Neural control of renal medullary perfusion. Clin Exp Pharmacol Physiol 31(5–6):387–396

    CAS  PubMed  Google Scholar 

  • Epstein M (1992) Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev 72(3):563–621

    CAS  PubMed  Google Scholar 

  • Ferreira-Filho SR, Cardoso CC, de Castro LAV, Oliveira RM, Sá RR (2011) Comparison of measured creatinine clearance and clearances estimated by Cockcroft-Gault and MDRD formulas in patients with a single kidney. Int J Nephrol 2011:4

    Google Scholar 

  • Forssmann W, Meyer M, Forssmann K (2001) The renal urodilatin system: clinical implications. Cardiovasc Res 51(3):450–462

    CAS  PubMed  Google Scholar 

  • Forte LR (2005) Uroguanylin: physiological role as a natriuretic hormone. J Am Soc Nephrol 16(2):291–292

    PubMed  Google Scholar 

  • Forte LR, London RM, Freeman RH, Krause WJ (2000) Guanylin peptides: renal actions mediated by cyclic GMP. Am J Physiol Renal Physiol 278(2):F180–F191

    CAS  PubMed  Google Scholar 

  • Fountain JH, Lappin SL (2019) Physiology, renin angiotensin system. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9(6):453–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • García NH, Ramsey CR, Knox FG (1998) Understanding the role of paracellular transport in the proximal tubule. Physiology 13(1):38–43

    Google Scholar 

  • Gaspari F, Perico N, Remuzzi G (1997) Measurement of glomerular filtration rate. Kidney Int Suppl 63:S151–S154

    CAS  PubMed  Google Scholar 

  • Geibel JP (2006) Distal tubule acidification. J Nephrol 19(Suppl 9):S18–S26

    CAS  PubMed  Google Scholar 

  • Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2):382–391

    CAS  PubMed  Google Scholar 

  • Gilbert SJ, Weiner DE (2017) Chapter 1: overview of kidney structure and function. In: National kidney foundation primer on kidney diseases, 7th edn. Elsevier, Philadelphia, pp 2–18

    Google Scholar 

  • Goetz KL, Hermreck AS, Slick GL, Starke HS (1970) Atrial receptors and renal function in conscious dogs. Am J Phys 219(5):1417–1423

    CAS  Google Scholar 

  • Good DW, George T, Watts BA (2002) Aldosterone inhibits HCO absorption via a nongenomic pathway in medullary thick ascending limb. Am J Physiol Renal Physiol 283(4):F699–F706

    PubMed  Google Scholar 

  • Good DW, George T, Watts BA (2006) Nongenomic regulation by aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger. Am J Physiol Cell Physiol 290(3):C757–C763

    CAS  PubMed  Google Scholar 

  • Gorman AJ, Chen JS (1989) Reflex inhibition of plasma renin activity by increased left ventricular pressure in conscious dogs. Am J Phys 256(6 Pt 2):R1299–R1307

    CAS  Google Scholar 

  • Griendling KK, Alexander RW (1996) Endothelial control of the cardiovascular system: recent advances. FASEB J 10(2):283–292

    CAS  PubMed  Google Scholar 

  • Gross M, Goldwasser E (1970) On the mechanism of erythropoietin-induced differentiation. VII. The relationship between stimulated deoxyribonucleic acid synthesis and ribonucleic acid synthesis. J Biol Chem 245(7):1632–1636

    CAS  PubMed  Google Scholar 

  • Hall JE, Brands MW (2012) The renin-angiotensin-aldosterone system: renal mechanisms and circulatory homeostasis. In: Seldin and Giebisch’s. The kidney, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Hall JE, Guyton AC (2011a) Guyton and Hall textbook of medical physiology, 12th edn. Saunders/Elsevier, Philadelphia, PA, pp 303–322

    Google Scholar 

  • Hall JE, Guyton AC (2011b) Guyton and Hall textbook of medical physiology, 11th edn. Saunders/Elsevier, Philadelphia, PA, pp 331–338. Chapter 27

    Google Scholar 

  • Hall JE, Guyton AC (2011c) Guyton and Hall textbook of medical physiology, 11th edn. Saunders/Elsevier, Philadelphia, PA, pp 350–351. Chapter 28

    Google Scholar 

  • Hamm LL, Nakhoul N, Hering-Smith KS (2015) Acid-base homeostasis. Clin J Am Soc Nephrol 10(12):2232–2242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansell P, Isaksson B, Sjöquist M, Jöquist MS (2000) Renal dopamine and noradrenaline excretion during CNS-induced natriuresis in spontaneously hypertensive rats: influence of dietary sodium. Acta Physiol Scand 168(1):257–266

    CAS  PubMed  Google Scholar 

  • Henry JP, Gauer OH, Reeves JL (1956) Evidence of the atrial location of receptors influencing urine flow. Circ Res 4(1):85–90

    CAS  PubMed  Google Scholar 

  • Hosomi H, Morita H (1996) Hepatorenal and hepatointestinal reflexes in sodium homeostasis. Physiology 11(3):103–107

    CAS  Google Scholar 

  • Hughson M, Farris AB, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122

    PubMed  Google Scholar 

  • Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH et al (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117(9):2684–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A et al (2007) Alpha-Klotho as a regulator of calcium homeostasis. Science 316(5831):1615–1618

    CAS  PubMed  Google Scholar 

  • Joy MS, Karagiannis PC, Peyerl FW (2007) Outcomes of secondary hyperparathyroidism in chronic kidney disease and the direct costs of treatment. J Manag Care Pharm 13(5):397–411

    PubMed  Google Scholar 

  • Kim G-H (2008) Renal effects of prostaglandins and cyclooxygenase-2 inhibitors. Electrolyte Blood Press 6(1):35–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SM, Mizel D, Huang YG, Briggs JP, Schnermann J (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290(5):F1016–F1023

    CAS  PubMed  Google Scholar 

  • Klein JD, Sands JM, Qian L, Wang X, Yang B (2004) Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B. J Am Soc Nephrol 15(5):1161–1167

    CAS  PubMed  Google Scholar 

  • Knepper MA, Stephenson JL (1986) Urinary concentrating and diluting processes. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders. Springer, Boston, MA, pp 713–726

    Google Scholar 

  • Koeppen B, Stanton B (2018) Renal physiology, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kone BC (1997) Nitric oxide in renal health and disease. Am J Kidney Dis 30(3):311–333

    CAS  PubMed  Google Scholar 

  • Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248(4953):378–381

    CAS  PubMed  Google Scholar 

  • Kuhn M (2004) Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol 99(2):76–82

    CAS  Google Scholar 

  • Kuro-o M (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15(4):437–441

    CAS  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51

    CAS  Google Scholar 

  • Lanske B, Razzaque MS (2007) Premature aging in klotho mutant mice: cause or consequence? Ageing Res Rev 6(1):73–79

    PubMed  PubMed Central  Google Scholar 

  • Laragh J (2001) Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens 14(9 Pt 1):837–854

    CAS  PubMed  Google Scholar 

  • Leslie SW, Sharma S (2019) Anatomy, abdomen and pelvis, renal artery. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Levey AS, Inker LA, Coresh J (2014) GFR estimation: from physiology to public health. Am J Kidney Dis 63(5):820–834

    PubMed  PubMed Central  Google Scholar 

  • Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339(5):321–328

    CAS  PubMed  Google Scholar 

  • Levine DZ, Iacovitti M, Nash L, Vandorpe D (1988) Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting. J Clin Invest 81(6):1873–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C-C, Muo C-H, Wang I-K, Chang C-T, Chou C-Y, Liu J-H et al (2014) Peptic ulcer disease risk in chronic kidney disease: ten-year incidence, ulcer location, and ulcerogenic effect of medications. PLoS One 9(2):e87952

    PubMed  PubMed Central  Google Scholar 

  • Lote CJ, Haylor J (1989) Eicosanoids in renal function. Prostaglandins Leukot Essent Fatty Acids 36(4):203–217

    CAS  PubMed  Google Scholar 

  • Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ et al (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97(8):4386–4391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madhav C, Menon MC, Chuang PY, He CJ (2012) The glomerular filtration barrier: components and crosstalk. Int J Nephrol 2012:9

    Google Scholar 

  • Mahony DT, Laferte RO, Blais DJ (1977) Integral storage and voiding reflexes: neurophysiologic concept of continence and micturition. Urology 9(1):95–106

    CAS  PubMed  Google Scholar 

  • Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int 79:S1–S6

    Google Scholar 

  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242(3):626–630

    CAS  Google Scholar 

  • McCann SM, Franci CR, Favaretto AL, Gutkowska J, Antunes-Rodrigues J (1997) Neuroendocrine regulation of salt and water metabolism. Braz J Med Biol 30(4):427–441

    CAS  Google Scholar 

  • Meyer M, Richter R, Brunkhorst R, Wrenger E, Schulz-Knappe P, Kist A et al (1996) Urodilatin is involved in sodium homeostasis and exerts sodium-state-dependent natriuretic and diuretic effects. Am J Phys 271(3 Pt 2):F489–F497

    CAS  Google Scholar 

  • Miller JA, Floras JS, Skorecki KL, Blendis LM, Logan AG (1991) Renal and humoral responses to sustained cardiopulmonary baroreceptor deactivation in humans. Am J Phys 260(3 Pt 2):R642–R648

    CAS  Google Scholar 

  • Mitchell GA (1950) The nerve supply of the kidneys. Acta Anat (Basel) 10(1–2):1–37

    CAS  Google Scholar 

  • Moore LC (1984) Tubuloglomerular feedback and SNGFR autoregulation in the rat. Am J Phys 247(2 Pt 2):F267–F276

    CAS  Google Scholar 

  • Morel F (1999) The loop of Henle, a turning-point in the history of kidney physiology. Nephrol Dial Transplant 14(10):2510–2515

    CAS  PubMed  Google Scholar 

  • Morita H, Nishida Y, Hosomi H (1991) Neural control of urinary sodium excretion during hypertonic NaCl load in conscious rabbits: role of renal and hepatic nerves and baroreceptors. J Auton Nerv Syst 34(2–3):157–169

    CAS  PubMed  Google Scholar 

  • Morita H, Matsuda T, Tanaka K, Hosomi H (1995) Role of hepatic receptors in controlling body fluid homeostasis. Jpn J Physiol 45(3):355–368

    CAS  PubMed  Google Scholar 

  • Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9(11):1974–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers BD, Peterson C, Molina C, Tomlanovich SJ, Newton LD, Nitkin R et al (1988) Role of cardiac atria in the human renal response to changing plasma volume. Am J Phys 254(4 Pt 2):F562–F573

    CAS  Google Scholar 

  • Nakhoul NL, Chen LK, Boron WF (1993) Effect of basolateral CO2/HCO3- on intracellular pH regulation in the rabbit S3 proximal tubule. J Gen Physiol 102(6):1171–1205

    CAS  PubMed  Google Scholar 

  • Nasrallah R, Hébert RL (2005) Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 289(2):F235–F246

    CAS  PubMed  Google Scholar 

  • National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  • Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88(2):491S–499S

    CAS  PubMed  Google Scholar 

  • Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232(2):194–201

    CAS  PubMed  Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53(1):159–227

    CAS  PubMed  Google Scholar 

  • Pallone TL, Turner MR, Edwards A, Jamison RL (2003) Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 284(5):R1153–R1175

    CAS  PubMed  Google Scholar 

  • Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PMT, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10(1):135–146

    CAS  PubMed  Google Scholar 

  • Peti-Peterdi J, Sipos A (2010) A high-powered view of the filtration barrier. J Am Soc Nephrol 21(11):1835–1841

    PubMed  PubMed Central  Google Scholar 

  • Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD (2014) The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 9(8):1461–1469

    PubMed  PubMed Central  Google Scholar 

  • Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80(4):338–347

    CAS  PubMed  Google Scholar 

  • Rhoades R, Tanner GA (2003) Medical physiology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Rhodin J (1958) Electron microscopy of the kidney. Am J Med 24(5):661–675

    CAS  PubMed  Google Scholar 

  • Robertson GL (1987) Physiology of ADH secretion. Kidney Int Suppl 21:S20–S26

    CAS  PubMed  Google Scholar 

  • Romano G, Favret G, Damato R, Bartoli E (1998) Proximal reabsorption with changing tubular fluid inflow in rat nephrons. Exp Physiol 83(1):35–48

    CAS  PubMed  Google Scholar 

  • Rule AD, Glassock RJ (2013) GFR estimating equations: getting closer to the truth? Clin J Am Soc Nephrol 8(8):1414–1420

    PubMed  PubMed Central  Google Scholar 

  • Sands JM, Layton HE (2009) The physiology of urinary concentration: an update. Semin Nephrol 29(3):178–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sands JM, Layton HE (2013) The urine concentrating mechanism and urea transporters. Kidney Physiol Pathophysiol 1:1143–1178

    Google Scholar 

  • Sands JM, Schrader DC (1991) An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts. J Clin Invest 88(1):137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47(3):312–318. Dallas Tex 1979

    CAS  Google Scholar 

  • Schlatter E, Salomonsson M, Persson AE, Greger R (1989) Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2Cl-K+ cotransport. Pflugers Arch 414(3):286–290

    CAS  PubMed  Google Scholar 

  • Schwartz GJ, Al-Awqati Q (1985) Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75(5):1638–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F et al (2007) Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 292(2):F769–F779

    CAS  PubMed  Google Scholar 

  • Skelton LA, Boron WF, Zhou Y (2010) Acid-base transport by the renal proximal tubule. J Nephrol 23(0 16):S4–S18

    PubMed  PubMed Central  Google Scholar 

  • Smith HW (1952) The kidney: structure and function in health and disease. Postgrad Med J 28(317):191–192

    Google Scholar 

  • Smith MT, Muralidharan A (2015) Targeting angiotensin II type 2 receptor pathways to treat neuropathic pain and inflammatory pain. Expert Opin Ther Targets 19(1):25–35

    CAS  PubMed  Google Scholar 

  • Soleimani M, Bergman JA, Hosford MA, McKinney TD (1990) Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex. J Clin Invest 86(4):1076–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM (2014) Classical renin-angiotensin system in kidney physiology. Compr Physiol 4(3):1201–1228

    PubMed  PubMed Central  Google Scholar 

  • Spivak JL, Pham T, Isaacs M, Hankins WD (1991) Erythropoietin is both a mitogen and a survival factor. Blood 77(6):1228–1233

    CAS  PubMed  Google Scholar 

  • Stanhewicz AE, Larry Kenney W (2015) Determinants of water and sodium intake and output. Nutr Rev 73(suppl_2):73–82

    PubMed  Google Scholar 

  • Stockelberg D, Andersson P, Björnsson E, Björk S, Wadenvik H (1999) Plasma thrombopoietin levels in liver cirrhosis and kidney failure. J Intern Med 246(5):471–475

    CAS  PubMed  Google Scholar 

  • Sugaya K, Nishijima S, Miyazato M, Ogawa Y (2005) Central nervous control of micturition and urine storage. J Smooth Muscle Res Nihon Heikatsukin Gakkai Kikanshi 41(3):117–132

    PubMed  Google Scholar 

  • Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T et al (1998) Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler Thromb Vasc Biol 18(3):349–355

    CAS  PubMed  Google Scholar 

  • Tannen RL (2011) Renal ammonia production and excretion. In: Comprehensive physiology. American Cancer Society, New York, pp 1017–1059

    Google Scholar 

  • Wakabayashi S, Bertrand B, Shigekawa M, Fafournoux P, Pouysségur J (1994) Growth factor activation and “H(+)-sensing” of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem 269(8):5583–5588

    CAS  PubMed  Google Scholar 

  • Wenger RH, Kurtz A (2011) Erythropoietin. Compr Physiol 1(4):1759–1794

    PubMed  Google Scholar 

  • Wolf G, Neilson EG (1996) From converting enzyme inhibition to angiotensin II receptor blockade: new insight on angiotensin II receptor subtypes in the kidney. Exp Nephrol 4(Suppl 1):8–19

    CAS  PubMed  Google Scholar 

  • Wu MS, Biemesderfer D, Giebisch G, Aronson PS (1996) Role of NHE3 in mediating renal brush border Na+-H+ exchange. Adaptation to metabolic acidosis. J Biol Chem 271(51):32749–32752

    CAS  PubMed  Google Scholar 

  • Yang B, Verkman AS (2002) Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem 277(39):36782–36786

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO3- and solute reabsorption are acutely regulated not by pH but by basolateral HCO3- and CO2. Proc Natl Acad Sci U S A 102(10):3875–3880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo JL, Li XC (2013) Proximal nephron. Compr Physiol 3(3):1079–1123

    PubMed  PubMed Central  Google Scholar 

  • Zimmerhackl BL, Robertson CR, Jamison RL (1987) The medullary microcirculation. Kidney Int 31(2):641–647

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S., Kaur, M., Singh, N.P. (2020). Normal Physiology of Renal System. In: Prabhakar, H., Gupta, N. (eds) Brain and Kidney Crosstalk. Physiology in Clinical Neurosciences – Brain and Spinal Cord Crosstalks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2325-0_2

Download citation

Publish with us

Policies and ethics