Skip to main content
Book cover

InECCE2019 pp 153–165Cite as

Optimization of Quaternion Based on Hybrid PID and \(\varvec{P}_{\varvec{\omega}} \varvec{ }\) Control

  • Conference paper
  • First Online:
  • 1193 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 632))

Abstract

The aim of this article is to present an optimization of full non-linear quaternion based on hybrid control scheme using Genetic Algorithm (GA). A comprehensive objective is used to find novel solutions to design hybrid controller based on PID and \(\varvec{ P}_{\varvec{\omega}}\) control so that the performance and functionality system and may be compromised. The proposed hybrid control algorithm and quadrotor attitude model have been implemented in the fully quaternion space without any conversion and calculations in the Euler’s angles. In this paper, the optimized quaternion with fitness function composed of \(\varvec{ K}_{\varvec{P}}\), \(\varvec{ K}_{\varvec{I}}\), \(\varvec{ K}_{\varvec{D}}\), and \(\varvec{ P}_{\varvec{\omega}}\) are proposed, and the output effective waveform is shown by simulations using MATLAB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Castillo P, Lozano R, Dzul A (2016) Modelling and control of mini flying machines, Automatica, Springer, 2005; Conference 2016, LNCS, vol 9999. Springer, Heidelberg, pp 1–13

    Google Scholar 

  2. Barczyk M, Lynch AF (2012) Integration of a trixial magnetormeter into a helicopter UAV GPS aided inertial navigation system. IEEE Trans Aerosp Electron Syst

    Google Scholar 

  3. Armutcuoglu O, Tekinalp O (2004) Tilt duck vertical takeoff and landing uninhabited aerial vehicle concept design study. J Aircraft 41(2):215–223

    Article  Google Scholar 

  4. Kendoul F, Fantoni I, Lozano R (2006) Modelling and control of a small autonomous aircraft having two tilting rotors. IEEE Trans Rob 22(6):1297–1302

    Article  Google Scholar 

  5. Prior SD, Karamanoglu M, Odedra S, Foran T, Erbil MA (2009) Development of co-axial tri-rotor UAV. Bristol Int Unmanned Aerial Veh Syst Conf

    Google Scholar 

  6. Romero H, Salazar S, Lozano R (2009) Real time stabalization of an eight rotor UAV using optocal flow. IEEE Trans Rob 25(4):809–817

    Article  Google Scholar 

  7. Abas MFB, Pebrianti D, Ali SAM, Iwakura D, Song Y, Nonami K, Fujiwara D (2013) Circular leader-follower formation control of quad-rotor aerial vehicles. J Robot Mechatron 25(1)

    Google Scholar 

  8. Zhao B, Xian B, Zhang Y, Zhang X (2015) Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans Ind Electron 62(5):2891–2902

    Article  Google Scholar 

  9. Xue K, Wang C, Li Z, Chen H (2016) Online adaptive error compensation SVM-based sliding mode control of an unmanned aerial vehicle. Int J Aerosp Eng

    Google Scholar 

  10. Modirrousta A, Khodabandeh M (2014) Adaptive robust sliding mode controller design for disturbances. In: Proceeding 2nd RSI/ISM International Conference on Robotics and Mechatronics, pp 870–877

    Google Scholar 

  11. Ghaffar AA, Richardson T (2015) Model reference adaptive control and LQR control for quadrotor with parametric uncertainties, vol 9, no 2, pp 244–250

    Google Scholar 

  12. Chen F, Jiang R, Zhang K, Jiang B, Tao G (2016) Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron 63(8):5044–5056

    Article  Google Scholar 

  13. Zulu A, John S (2014) A review of control algorithms for autonomous quadrotors. Open J Appl Sci 4:547–556

    Google Scholar 

  14. Ghiglino P, Forshaw JL, Lappas VJ (2015) OQTAL: optimal quaternion tracking using attitude error linearization. IEEE Trans Aerosp Electron Syst 51(4):2715–2731

    Article  Google Scholar 

  15. Djamel K, Abdellah M, Benallegue A (2016) Attitude optimal backstepping controller based quaternion for a UAV. Math Probl Eng

    Google Scholar 

  16. Di Lucia S, Tipaldi GD, Burgard W (2015) Attitude stabilization control of an aerial manipulator using a quaternion-based backstepping approach. In: 2015 European conference on mobile robots ECMR 2015—proceedings

    Google Scholar 

  17. Chovancova A, Fico T, Hubinsky P, Duchon F (2015) Comparison of various quaternion-based control methods applied to quadrotor with disturbance observer and position estimator. Robot Auton Syst 79:87–98

    Article  Google Scholar 

  18. Fresk E, Nikolakopoulos G (2013) Full quaternion based attitude control for a quadrotor. In: 2013 European control conference (ECC), pp 3864–3869

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank UMP for financing the research project under UMP research Scheme RDU1703315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Abas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Darohini, B. et al. (2020). Optimization of Quaternion Based on Hybrid PID and \(\varvec{P}_{\varvec{\omega}} \varvec{ }\) Control. In: Kasruddin Nasir, A.N., et al. InECCE2019. Lecture Notes in Electrical Engineering, vol 632. Springer, Singapore. https://doi.org/10.1007/978-981-15-2317-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2317-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2316-8

  • Online ISBN: 978-981-15-2317-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics