Skip to main content

Comparison of Renewable Energy Generation in an Electrical Network with Energy Storage System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 626))

Abstract

The optimum operation and amount of energy storage are operated by a buyer who faces unstable electricity costs and seeks to decrease its energy prices. The worth of storage is demarcated the consumer’s Internet profit obtained by optimally operative the storage. Model projecting management based mostly coordinated planning framework for different renewable energy generation then battery energy storing arrangements is accessible. On the idea of the short forecast of accessible renewable energy generation and cost info, a joint look-ahead optimization is performed by completely the various power plants and storage system to work out their internet energy booster towards the electrical network. In concurrence with moderate battery capability, the surplus unpredictable renewable power generation may be charging the battery storage and contrariwise. This paper presents an outline; in addition, overall educations of analysis and development within the field of various resolution strategies for energy storage systems and dynamic programming strategies are found within the literature. This paper has reviewed a number of the foremost common strategies together with various algorithms and computational simulation strategies. This paper provides help for the upcoming studies for those interested in the problem or proposing to do additional research in this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. García-González, Rocío Moraga Ruiz, L. de la Muela, M. Santos, A.M. González, Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Trans. Power Syst. 23(2), 460–468 (2008)

    Article  Google Scholar 

  2. E. Bitar, R. Rajagopal, P. Khargonekar, K. Poolla, The role of co-located storage for wind power producers in conventional electricity markets, in American Control Conference (2011), pp. 3886–3891

    Google Scholar 

  3. L. Xie, Y. Gu2, A. Eskandari, M. Ehsani, Fast MPC-based coordination of wind power and battery energy storage systems. J. Energy Eng. 43–53 (2012)

    Google Scholar 

  4. H.-I. Su, A.E. Gamal, Modeling and analysis of the role of energy storage for renewable integration: power balancing. IEEE Trans. Power Syst. 1–9 (2013)

    Google Scholar 

  5. I. Koutsopoulos, V. Hatzi, L. Tassiulas, Optimal energy storage control policies for the smart power grid. IEEE Smart Grid Commun. 475–480 (2011)

    Google Scholar 

  6. J. Qin, R. Sevlian, D. Varodayan, R. Rajagopal, Optimal electric energy storage operation (IEEE, 2012), pp. 1–6

    Google Scholar 

  7. P.M. van de Ven, N. Hegde, L. Massoulié, T. Salonidis, Optimal control of end-user energy storage. IEEE Transa. Smart Grid 1–9 (2013)

    Google Scholar 

  8. Y. Xu, L. Tong, On the operation and value of storage in consumer demand response, in IEEE Conference on Decision and Control (2014), pp. 205–210

    Google Scholar 

  9. P. Harsha, M. Dahleh, Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy. IEEE Trans. Power Syst. 30(3), 1164–1181 (2015)

    Article  Google Scholar 

  10. R. Sioshansi, S.H. Madaeni, P. Denholm, A dynamic programming approach to estimate the capacity value of energy storage. IEEE Trans. Power Syst. 1–9 (2013)

    Google Scholar 

  11. S. Kwon, Y. Xu, N. Gautam, Meeting inelastic demand in systems with storage and renewable sources. IEEE Trans. Smart Grid 1–11 (2015)

    Google Scholar 

  12. R. Urgaonkar, B. Urgaonkar, M.J. Neely, A. Sivasubramanian, Optimal power cost management using stored energy in data centers, in Sigmetrics’11 (2011), pp. 221–232

    Google Scholar 

  13. L. Huang, J. Walrand, K. Ramchandran, Optimal demand response with energy storage management. IEEE Smart Grid Commun. 61–66 (2012)

    Google Scholar 

  14. S. Lakshminarayana, T.Q.S. Quek, H. Vincent Poor, Cooperation and storage trade-offs in power grids with renewable energy resources. IEEE J. Sel. Areas Commun. 32(7), 1386–1397 (2009)

    Article  Google Scholar 

  15. R.J. Barthelmie, F. Murray, S.C. Pryor, The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy 36, 1687–1696 (2008)

    Article  Google Scholar 

  16. Y.V. Makarov, C. Loutan, J. Ma, P. de Mello, Operational Impacts of wind generation on california power systems. IEEE Trans. Power Syst. 24(2), 1039–1050 (2009)

    Article  Google Scholar 

  17. S. Lakshminarayana, W. Wei, H. Vincent Poor, T.Q.S. Quek, Cooperation and storage tradeoffs in power-grids under DC power flow constraints and inefficient storage (2015) IEEE, pp. 1–5

    Google Scholar 

  18. P.C. Del Granado, S.W. Wallace, Z. Pang, The value of electricity storage in domestic homes: a smart grid perspective. Energy Syst. 5, 211–232 (2014)

    Article  Google Scholar 

  19. A. Federgruen, N. Yang, Infinite horizon strategies for replenishment systems with a general pool of suppliers. Oper. Res. 62(1), 141–159 (2015)

    Article  MathSciNet  Google Scholar 

  20. S. Bose, E. Bitar, Variability and the locational marginal value of energy storage, in IEEE Conference on Decision and Control (2014), pp. 15–17

    Google Scholar 

  21. N. Gast, D.-C. Tomozei, J.-Y. Le Boudec, Optimal generation and storage scheduling in the presence of renewable forecast uncertainties. IEEE Trans. Smart Grid 5(3), 1328–1339 (2014)

    Article  Google Scholar 

  22. I. Atzeni, L.G. Ordóñez, G. Scutari, D.P. Palomar, J. Rodríguez Fonollosa, Demand-side management via distributed energy generation and storage optimization. IEEE Trans. Smart Grid 1–11 (2012)

    Google Scholar 

  23. T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche, P. Shenoy, Sharing renewable energy in smart microgrids, in ICCPS’13, (2013), pp. 219–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loganathan, N., Arvin Tony, A., Malini, T., Gobhinath, S. (2020). Comparison of Renewable Energy Generation in an Electrical Network with Energy Storage System. In: Saini, H., Srinivas, T., Vinod Kumar, D., Chandragupta Mauryan, K. (eds) Innovations in Electrical and Electronics Engineering. Lecture Notes in Electrical Engineering, vol 626. Springer, Singapore. https://doi.org/10.1007/978-981-15-2256-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2256-7_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2255-0

  • Online ISBN: 978-981-15-2256-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics