Skip to main content

Performance Evaluation of Transistor Clamped H-Bridge (TCHB)-Based Five-Level Inverter

  • Conference paper
  • First Online:
Book cover Innovations in Electrical and Electronics Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 626))

  • 879 Accesses

Abstract

Multilevel inverters are usually employed in high-power applications. Lower harmonics in the output make the multilevel inverters capable to handle high-power applications. Their main drawbacks are complex circuitry, with high number of power electronic devices and passive components. So, a structure called Transistor Clamped H-Bridge Multilevel Inverter (TCHB) is designed. This topology gives five-level voltage output with reduced number of switches. The simulation results employing level-shifted multicarrier modulation are presented, and THD is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Lai, F.Z. Peng, Multilevel converters—a new source of power converters. IEEE Trans. Ind. Appl. 3, 509–517 (1996)

    Google Scholar 

  2. J. Rodriguez, J.-S. Lai, F.Z. Peng, Multilevel inverters: a survey of topologies, and applications. IEEE Trans. Ind. Electron. 4, 724–738 (2002)

    Google Scholar 

  3. J. Li, A.Q. Huang, Z. Liang et al., Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Trans. Power Electron. 2, 519–533 (2012)

    Article  Google Scholar 

  4. S. Ceballos, J. Pou, J. Zaragoza et al., Fault-tolerant neutral-point-clamped converter solutions based on including a fourth resonant leg. IEEE Trans. Ind. Electron. 6, 2293–2303 (2011)

    Article  Google Scholar 

  5. S. Ceballos, J. Pou, E. Robles et al., Three-level converter topologies with switch breakdown fault-tolerance capability. IEEE Trans. Ind. Electron. 55(3), 982–995 (2008)

    Google Scholar 

  6. X. Kou, K.A. Corzine, Y.L. Familiant, A unique fault-tolerant design for flying capacitor multilevel inverter. IEEE Trans. Power Electron. 4, 979–987 (2004)

    Article  Google Scholar 

  7. K. Mohana Sundaram, P. Anandhraj, V. Vimalraj Ambeth, PV-fed eleven-level capacitor switching multi-level inverter for grid integration, in Advances in Smart Grid and Renewable Energy, Lecture notes in Electrical Engineering (Springer, Singapore, 2018), pp. 57–64

    Google Scholar 

  8. M. Ma, L. Hu, A. Chen et al., Reconfiguration of carrier-based modulation strategy for fault tolerant multilevel inverters. IEEE Trans. Power Electron. 5, 2050–2060 (2007)

    Google Scholar 

  9. S. Ceballos, J. Pou, E. Robles et al., Performance evaluation of fault-tolerant neutral-point-clamped converters. IEEE Trans. Ind. Electron. 8, 2709–2718 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiranmayee, V., Sharath Kumar, A. (2020). Performance Evaluation of Transistor Clamped H-Bridge (TCHB)-Based Five-Level Inverter. In: Saini, H., Srinivas, T., Vinod Kumar, D., Chandragupta Mauryan, K. (eds) Innovations in Electrical and Electronics Engineering. Lecture Notes in Electrical Engineering, vol 626. Springer, Singapore. https://doi.org/10.1007/978-981-15-2256-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2256-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2255-0

  • Online ISBN: 978-981-15-2256-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics