Skip to main content

Numerical Analysis of Phytoremediation for Cr6+ Contaminated Ground

  • Conference paper
  • First Online:
Geotechnics for Sustainable Infrastructure Development

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 62))

  • 5382 Accesses

Abstract

Phytoremediation is recently paid attention as one of the low-cost and sustainable methods especially for remedying heavy metal contaminated ground. However, there are several cases that it may not be effective because plant growth is often dominated by geotechnical and climatic environments. To perform this method efficiently and effectively, it is necessary to evaluate the relationship between plant growth and geo-chemical and physical environments. Therefore, authors developed “geo-environment – plant root growth simulator” in order to estimate the future distribution of chemical substances in the ground. The explicit-finite-difference-method was applied on the simulator. The movement of soil moisture and water soluble substance can be modelled by Richard’s equation and advection-dispersion-equation. As a targeted pollutant, hexavalent chromium (Cr6+) was chosen. This paper conducted a parametric study with changing three parameters such as the initial length of root (L), solute absorption speed of root (Kp), and root length density (Lv2) about the movement of chemical substances in unsaturated ground on a cylindrical coordinate system. As a result, in this numerical condition, the initial length of root had the largest effect for phytoremediation in the three parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cunningham, S. D., Berti, W. R., and Huang, J. W. (1995). Phytoremediation of contaminated soils, Trends in biotechnology, Vol. 13, No. 9, pp 393–397.

    Google Scholar 

  • Kubota, H., Sugawara, R., Kitajima, N., Yajima, S., and Tani, S. (2010). Cadmium phytoremediation by Arabidopsis halleri ssp. Gemmifera, Japanese Journal of Soil Science and Plant Nutrition, Vol. 81 No. 2, pp 118–124.

    Google Scholar 

  • Morimoto, T., Kasama, K., and Furukawa, Z. (2018). Vegetation experiment for remedying hexavalent chromium (Cr6+)–contaminated unsaturated soil by utilizing growth of root, Proc. of the 5th Korea-Japan Joint Workshop on Unsaturated Soils, pp 131–136.

    Google Scholar 

  • Nakagawa, K. (2007). Groundwater Simulation using Spreadsheets, Japanese groundwater Hydrology Journal. Vol. 49, No.1, pp 49–57.

    Google Scholar 

  • Nakano, M. (2002). Mass transportation in the soil (Tsuchi no bussitu idou-gaku), Vol. 17, No. 77–79, pp 124–126. (in Japanese)

    Google Scholar 

  • Richards, L. A. (1931). Capillary conduction of liquids through porous mediums, Physics, Vol. 1, No. 5, pp 318–333.

    Google Scholar 

  • Seki, K. (2007). SWRC fit – a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure, Hydrology and Earth System Sciences Discussions, Vol. 4, No. 1, pp 407–437.

    Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1, Soil science society of America journal, Vol. 44, No. 5, pp 892–898.

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP16K18151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taishi Koga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koga, T., Furukawa, Z., Kasama, K., Morimoto, T. (2020). Numerical Analysis of Phytoremediation for Cr6+ Contaminated Ground. In: Duc Long, P., Dung, N. (eds) Geotechnics for Sustainable Infrastructure Development. Lecture Notes in Civil Engineering, vol 62. Springer, Singapore. https://doi.org/10.1007/978-981-15-2184-3_169

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2184-3_169

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2183-6

  • Online ISBN: 978-981-15-2184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics