Skip to main content

Role of Phytochemicals in Cancer Cell Metabolism Regulation

  • Chapter
  • First Online:

Abstract

The alteration in cellular metabolism whereby cancer cell meets the demand of bioenergetics, biosynthesis, and redox status to support their uncontrolled cell proliferation, growth, tumor progression, and metastasis is considered as a prominent hallmark of cancer. Warburg effect is the most commonly noticed consequence of these metabolic reprogramming which aggravate cancer cell to opt for glycolytic pathway over more efficient oxidative phosphorylation even under normoxic condition to generate lactate, as well as intermediates for lipid, nucleotide, amino acids synthesis, which are essential to maintain tumorigenesis and cancer progression. In order to develop efficient chemotherapeutic drug, various enzymes and proteins involved or associated with glycolytic pathways such as PMK2, LDHA and signaling pathways such as PKI3-Akt-mTOR are being targeted to inhibit various stages of cancer progression. In that direction, phytochemicals that are bioactive compounds obtained from plant sources have displayed promising results in hampering the growth of various cancer cell lines. Compounds of flavonoid class such as quercetin and fisetin along with other polyphenols and non-flavonoids such as resveratrol, isothiocyanates, and curcumin have displayed remarkable inhibitory effect on cancer cell metabolism. Overall, this chapter will highlight the effect of different phytochemicals on the metabolic pathways of cancer cells to inhibit various stages of cancer progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Busselberg D (2018) Flavonoids in cancer and apoptosis. Cancers 11(1):28

    Article  CAS  PubMed Central  Google Scholar 

  • Adams BK, Cai J, Armstrong J, Herold M, Lu YJ, Sun A, Snyder JP, Liotta DC, Jones DP, Shoji M (2005) EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16(3):263

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Ghosh U, Bhattacharyya NP, Bhattacharya RK, Roy M (2006) Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells. Mutat Res 596(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Chaneton B, Gottlieb E (2012) Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem Sci 37:309–316

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary LR, Hruska KA (2003) Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem 89(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T (2018) Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int J Mol Sci 19(11):3568

    Article  CAS  PubMed Central  Google Scholar 

  • Collett GP, Campbell FC (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25(11):2183–2189

    Article  CAS  PubMed  Google Scholar 

  • Conaway CC, Jiao D, Chung FL (1996) Inhibition of rat liver cytochrome P450 isozymes by isothiocyanates and their conjugates: a structure-activity relationship study. Carcinogenesis 17(11):2423–2427

    Article  CAS  PubMed  Google Scholar 

  • Dashwood RH, Ho E (2008) Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev 66(Suppl 1):S36–S38

    Article  PubMed  Google Scholar 

  • Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW (2017) Polyphenolic phytochemicals in cancer prevention and therapy: bioavailability versus bioefficacy. J Med Chem 60(23):9413–9436

    Article  CAS  PubMed  Google Scholar 

  • Faber AC, Dufort FJ, Blair D, Wagner D, Roberts MF, Chiles TC (2006) Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochem Pharmacol 72(10):1246–1256

    Google Scholar 

  • Fimognari C, Lenzi M, Hrelia P (2008a) Chemoprevention of cancer by isothiocyanates and anthocyanins: mechanisms of action and structure-activity relationship. Curr Med Chem 15(5):440–447

    Article  CAS  PubMed  Google Scholar 

  • Fimognari C, Lenzi M, Hrelia P (2008b) Interaction of the isothiocyanate sulforaphane with drug disposition and metabolism: pharmacological and toxicological implications. Curr Drug Metab 9(7):668–678

    Article  CAS  PubMed  Google Scholar 

  • Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chromone: a valid scaffold in medicinal chemistry. Chem Rev 114(9):4960–4992

    Article  CAS  PubMed  Google Scholar 

  • Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. ChemMedChem 7(8):1318–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton KE, Rekman JF, Gunnink LK, Busscher BM, Scott JL, Tidball AM, Stehouwer NR, Johnecheck GN, Looyenga BD, Louters LL (2018) Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie 151:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa T, Nishino H, Iwashima A (1993) Isothiocyanates inhibit cell cycle progression of HeLa cells at G2/M phase. Anticancer Drugs 4(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16(10):635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Feng C, Vinothkumar R, Chen W, Dai X, Chen X, Ye Q, Qiu C, Zhou H, Wang Y, Liang G, Xie Y, Wu W (2016) Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Cancer Chemother Pharmacol 78(6):1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS (1995) Chemoprevention by isothiocyanates. J Cell Biochem 59(S22):195–209

    Article  Google Scholar 

  • Hosseini A, Ghorbani A (2015) Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed 5(2):84–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao D, Eklind KI, Choi CI, Desai DH, Amin SG, Chung FL (1994) Structure-activity relationships of isothiocyanates as mechanism-based inhibitors of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice. Cancer Res 54(16):4327–4333

    CAS  PubMed  Google Scholar 

  • Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomol Ther 9(5):174

    Google Scholar 

  • Kocyigit A, Guler E (2017) Curcumin induce DNA damage and apoptosis through generation of reactive oxygen species and reducing mitochondrial membrane potential in melanoma cancer cells. Cell Mol Biol 63:97

    Article  PubMed  Google Scholar 

  • Kuang YF, Chen YH (2004) Induction of apoptosis in a non-small cell human lung cancer cell line by isothiocyanates is associated with P53 and P21. Food Chem Toxicol 42(10):1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Nishikawa A, Kitamura Y, Kanki K, Ishii Y, Umemura T, Hirose M (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY (2018) Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep 8(1):2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Lai B, Yuan Q (2008) Sulforaphane induces cell-cycle arrest and apoptosis in cultured human lung adenocarcinoma LTEP-A2 cells and retards growth of LTEP-A2 xenografts in vivo. J Nat Prod 71(11):1911–1914

    Article  CAS  PubMed  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoTempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R, Srivatsan ES, Wang MB (2005) Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 11(19):6994

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087

    Article  CAS  PubMed  Google Scholar 

  • Martín-Cordero C, López-Lázaro M, Gálvez M, Ayuso MJ (2003) Curcumin as a DNA topoisomerase II poison. J Enzyme Inhib Med Chem 18(6):505–509

    Article  CAS  PubMed  Google Scholar 

  • Matsui TA, Murata H, Sakabe T, Sowa Y, Horie N, Nakanishi R, Sakai T, Kubo T (2007) Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. Oncol Rep 18:1263–1268

    CAS  PubMed  Google Scholar 

  • Miyoshi N, Uchida K, Osawa T, Nakamura Y (2004) Benzyl isothiocyanate modifies expression of the G2/M arrest-related genes. Biofactors 21(1GÇÉ4):23–26

    Article  CAS  PubMed  Google Scholar 

  • Morse MA, Amin SG, Hecht SS, Chung FL (1989) Effects of aromatic isothiocyanates on tumorigenicity, O6-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Res 49(11):2894

    CAS  PubMed  Google Scholar 

  • Morse MA, Eklind KI, Amin SG, Hecht SS, Chung FL (1989) Effects of alkyl chain length on the inhibition of NNK-induced lung neoplasia in A/J mice by arylalkyl isothiocyanates. Carcinogenesis 10(9):1757–1759

    Article  CAS  PubMed  Google Scholar 

  • Morse MA, Eklind KI, Hecht SS, Jordan KG, Choi CI, Desai DH, Amin SG, Chung FL (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51(7):1846

    CAS  PubMed  Google Scholar 

  • Morse MA, Zu H, Galati AJ, Schmidt CJ, Stoner GD (1993) Dose-related inhibition by dietary phenethyl isothiocyanate of esophageal tumorigenesis and DNA methylation induced by N-nitrosomethylbenzylamine in rats. Cancer Lett 72(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609

    Article  CAS  PubMed  Google Scholar 

  • Ngo H, Tortorella SM, Ververis K, Karagiannis TC (2015) The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 42(4):825–834

    Article  CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  • Prakasam G, Iqbal MA, Bamezai RNK, Mazurek S (2018) Posttranslational modifications of pyruvate kinase M2: tweaks that benefit cancer. Front Oncol 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes-Farias M, Carrasco-Pozo C (2019) The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int JMol Sci 20(13):3177

    Article  CAS  Google Scholar 

  • Rivera Rivera A, Castillo-Pichardo L, Gerena Y, Dharmawardhane S (2016) Anti-breast cancer potential of quercetin via the Akt/AMPK/mammalian target of rapamycin (mTOR) signaling cascade. PLoS One 11(6):e0157251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo M, Spagnuolo C, Tedesco I, Russo GL (2010) Phytochemicals in cancer prevention and therapy: truth or dare? Toxins 2(4):517–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, Longacre M (2013) Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 14(10):21087–21113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyan KS, Swamy N, Dizon DS, Singh R, Granai CO, Brard L (2006) Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 103(1):261–270 

    Article  CAS  PubMed  Google Scholar 

  • Saunier E, Antonio S, Regazzetti A, Auzeil N, Laprévote O, Shay JW, Coumoul X, Barouki R, Benelli C, Huc L, Bortoli S (2017) Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci Rep 7(1):6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz ML, Mattioli I, Buss H, Kracht M (2004) NF-κB: a multifaceted transcription factor regulated at several levels. Chembiochem 5(10):1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harb Perspect Med 5(4):a006098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056(1):206–217

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai RNK, Husain M, Ali SM, Iqbal MA (2018) Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep 8(1):8323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB, Hahm ER, Rigatti LH, Normolle DP, Yuan JM, Singh SV (2018) Inhibition of glycolysis in prostate cancer chemoprevention by phenethyl isothiocyanate. Cancer Prev Res (Phila) 11(6):337–346

    Article  CAS  Google Scholar 

  • Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6(1):24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundarraj K, Raghunath A, Perumal E (2018) A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed Pharmacother 97:928–940

    Article  CAS  PubMed  Google Scholar 

  • Syng-ai C, Kumari AL, Khar A (2004) Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3(9):1101

    CAS  PubMed  Google Scholar 

  • Talalay P, Zhang Y (1996) Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans 24(3):806–810

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y, Chen Z, Pelicano H, Plunkett W, Wierda WG, Keating MJ, Huang P (2008) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112(5):1912–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaupel P, Schmidberger H, Mayer A (2019) The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 95(7):912–919

    Article  CAS  PubMed  Google Scholar 

  • Virtanen AI, Kreula M, Kies-vaara M (1963) Investigations on the alleged goitrogenic properties of milk. Z Ernahrungswiss 3:23–37

    Google Scholar 

  • Wang H, Khor TO, Shu L, Su ZY, Fuentes F, Lee JH, Kong ANT (2012) Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12(10):1281–1305

    Article  CAS  Google Scholar 

  • Wattenberg LW (1977) Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst 58(2):395–398

    Article  CAS  PubMed  Google Scholar 

  • Wattenberg LW (1987) Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8(12):1971–1973

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67(5):2239–2246

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, Trump DL, Singh SV (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 24(5):891–897

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong ANT (2005) ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis 27(3):437–445

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Thornalley PJ (2001) Signal transduction activated by the cancer chemopreventive isothiocyanates: cleavage of BID protein, tyrosine phosphorylation and activation of JNK. Br J Cancer 84(5):670–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Thornalley PJ (2000) Studies on the mechanism of the inhibition of human leukaemia cell growth by dietary isothiocyanates and their cysteine adducts in vitro. Biochem Pharmacol 60(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Mandlekar S, Harvey KJ, Ucker DS, Kong ANT (1998) Chemopreventive isothiocyanates induce apoptosis and caspase-3-like protease activity. Cancer Res 58(3):402

    CAS  PubMed  Google Scholar 

  • Zhang R, Loganathan S, Humphreys I, Srivastava SK (2006) Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J Nutr 136(11):2728–2734

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54(7 Suppl):1976s

    CAS  PubMed  Google Scholar 

  • Zhang Y, Tang L, Gonzalez V (2003) Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol Cancer Ther 2(10):1045

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, A.K., Gautam, M.K., Tripathi, G. (2020). Role of Phytochemicals in Cancer Cell Metabolism Regulation. In: Kumar, D. (eds) Cancer Cell Metabolism: A Potential Target for Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-1991-8_11

Download citation

Publish with us

Policies and ethics