Skip to main content

Introduction

  • Chapter
  • First Online:
  • 619 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Robots are widely applied in many areas, including but not limited to, automobile engineering, aerospace engineering, port engineering, electronic industry, food industry, surgical operation, housekeeping service.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mordechai BA, Francesco M (2018) Element of robotics. Springer, Switzerland

    MATH  Google Scholar 

  2. Siciliano B, Khatib O (2008) Element of robotics. Springer, Berlin

    MATH  Google Scholar 

  3. Angeles J (2007) Fundamentals of robotic mechanical systems. Springer, New York

    Book  MATH  Google Scholar 

  4. Liu XJ, Wang JS (2014) Parallel mechanism: type, kinematics, and optimal design. Springer, Berlin

    Book  Google Scholar 

  5. Li QC, Hervé JM, Ye W (2020) Geometric method for type synthesis of parallel manipulators. Springer, Singapore

    Book  MATH  Google Scholar 

  6. Merlet JP (2006) Parallel robots. Springer, Netherlands

    MATH  Google Scholar 

  7. Asea Brown Boveri Ltd. https://new.abb.com. Accessed 22 Aug 2019

  8. KUKA ROBOT. https://www.kuka.com. Accessed 22 Aug 2019

  9. FANUC. https://www.fanuc.com. Accessed 22 Aug 2019

  10. Farhang K, Zargar YS (1999) Design of spherical 4R mechanisms: function generation for the entire motion cycle. J Mech Des 121(4):521–528

    Article  Google Scholar 

  11. Wang B, Fang YF (2018) Structural constraint and motion mode analysis on parallel mechanism with bifurcated motion. J Xi’an Jiaotong Univ 52(6):62–68

    Google Scholar 

  12. Bennett Geoffrey T (1903) A new mechanism. Engineering 76(1903):777

    Google Scholar 

  13. Liu SY, Chen Y (2009) Myard linkage and its mobile assemblies. Mech Mach Theory 44(10):1950–1963

    Article  MATH  Google Scholar 

  14. Chen Y, You Z (2007) Spatial 6R linkages based on the combination of two Goldberg 5R linkages. Mech Mach Theory 42(11):1484–1498

    Article  MATH  Google Scholar 

  15. Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer, Heidelberg

    MATH  Google Scholar 

  16. Ding WH, Deng H, Li QM et al (2014) Control-orientated dynamic modeling of forging manipulators with multi-closed kinematic chains. Robot Comput Integr Manuf 30(5):421–431

    Article  Google Scholar 

  17. You Z, Chen Y (2012) Motion structures: deployable structural assemblies of mechanisms. Spon, London

    Google Scholar 

  18. Chen Y, You Z (2008) An extended Myard linkage and its derived 6R linkage. J Mech Des 130(5):052301 (8 pages)

    Google Scholar 

  19. Gough VE, Whitehall SG (1962) Universal type testing machine. In: Proceedings of the 9th international automobile technical congress, vol 1962. London, pp 117–137

    Google Scholar 

  20. Sprint Z3 Head. https://www.ctemag.com. Accessed 22 Aug 2019

  21. Hunt KH (1983) Structural kinematics of in-parallel-actuated robot-arms. J Mech Trans Autom Des 105(4):705–712

    Article  Google Scholar 

  22. CHNROBOT. http://www.chnrobot.com. Accessed 22 Aug 2019

  23. EXECHON. http://www.exechon.com. Accessed 22 Aug 2019

  24. Neumann KE (2002) Tricept application. In: 3rd chemnitz parallel kinematics seminar, vol 2002. Zwickau, pp 547–551

    Google Scholar 

  25. Tricept. http://www.pkmtricept.com. Accessed 22 Aug 2019

  26. Omni-Wrist VI. http://www.anthrobot.com. Accessed 22 Aug 2019

  27. Lu Y, Dai ZH, Wang P (2018) Full forward kinematics of redundant kinematic hybrid. Appl Math Model 62:134–144

    Article  MathSciNet  Google Scholar 

  28. Hu B (2014) Complete kinematics of a serial-parallel manipulator formed by two Tricept parallel manipulators connected in serials. Nonlinear Dyn 78:2685–2698

    Article  MATH  Google Scholar 

  29. McCarthy JM, Gim SS (2011) Geometric design of linkages. Springer, New York

    Book  MATH  Google Scholar 

  30. Zhang D (2010) Parallel robotic machine tools. Springer, New York

    Book  Google Scholar 

  31. Ball RS (1875) The theory of screws: a geometrical study of kinematics, equilibrium and small oscillations of a rigid body. Trans R Irish Acad 25:157–218

    Google Scholar 

  32. Hunt KH (1978) Kinematic geometry of mechanisms. Oxford University Press, USA

    MATH  Google Scholar 

  33. Angeles J (2012) Spatial kinematic chains: analysis-synthesis-optimization. Springer Science & Business Media, Heidelberg

    MATH  Google Scholar 

  34. Tsai LW, Roth B (1972) Design of dyads with helical, cylindrical, spherical, revolute and prismatic joints. Mech Mach Theory 7(1):85–102

    Article  Google Scholar 

  35. Crane C, Rico J, Duffy J (2009) Screw theory and its application to spatial robot manipulators. Center for Intelligent Machines and Robotics, University of Florida, Gainesville, FL, Technical Report

    Google Scholar 

  36. Angeles J (2007) Fundamentals of robotic mechanical systems: theory, methods and algorithms, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  37. Martínez JMR, Duffy J (1993) The principle of transference: history, statement and proof. Mech Mach Theory 28:165–177

    Article  Google Scholar 

  38. Dai JS, Jones JR (2001) Interrelationship between screw systems and corresponding reciprocal systems and applications. Mech Mach Theory 36(5):633–651

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu WJ, Zhang LJ, Xie P et al (2017) Review on the mobility development history with the understanding of overconstraints. J Mech Eng 53(15):81–92

    Article  Google Scholar 

  40. Leal ER, Dai JS, Pennock G (2013) Screw-system-based mobility analysis of a family of fully translational parallel manipulators. Math Probl Eng 3:1–9

    MathSciNet  Google Scholar 

  41. Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145

    Article  Google Scholar 

  42. Huang Z, Li QC (2003) Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int J Robot Res 22:59–79

    Google Scholar 

  43. Fang YF, Tsai LW (2002) Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures. Int J Robot Res 21(9):799–810

    Article  Google Scholar 

  44. Fang YF, Tsai LW (2004) Structure synthesis of a class of 3-DoF rotational parallel manipulators. IEEE Trans Robot Autom 20(1):117–121

    Article  Google Scholar 

  45. Kong XW, Gosselin CM (2004) Type synthesis of 3-DoF translational parallel manipulators based on screw theory. ASME J Mech Des 126(1):83–92

    Article  Google Scholar 

  46. Kong XW, Gosselin CM (2006) Type synthesis of 4-DoF SP-equivalent parallel manipulators: a virtual chain approach. Mech Mach Theory 41(11):1306–1319

    Article  MATH  Google Scholar 

  47. Song YM, Gao H, Sun T et al (2014) Kinematic analysis and optimal design of a novel 1T3R parallel manipulator with an articulated travelling plate. Robot Comput Integr Manuf 30(5):508–551

    Article  Google Scholar 

  48. Song YM, Lian BB, Sun T et al (2014) A novel five-degree-of-freedom parallel manipulator and its kinematic optimization. ASME Trans J Mech Robot 6(4):410081–410089

    Google Scholar 

  49. Lian BB, Sun T, Song YM (2017) Stiffness modeling, analysis and evaluation of a 5 degree of freedom hybrid manipulator for friction stir welding. Proc Inst Mech Eng Part C J Mech Eng Sci 231(23):4441–4456

    Article  Google Scholar 

  50. Lian BB, Sun T, Song YM (2016) Stiffness analysis of a 2-DoF over-constrained RPM with an articulated traveling platform. Mech Mach Theory 96:165–178

    Article  Google Scholar 

  51. Lian BB, Sun T, Song YM (2015) Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects. Int J Mach Tools Manuf 95:82–96

    Article  Google Scholar 

  52. Sun T (2012) Performance evaluation index framework of lower mobility parallel manipulators. Dissertation, Tianjin University

    Google Scholar 

  53. Lian BB (2017) Methodology of multi-objective optimization for a five degree-of-freedom parallel manipulator. Dissertation, Tianjin University

    Google Scholar 

  54. Dimentberg FM (1965) The screw calculus and its applications in mechanics. Izdat, Mauda Moscow

    Google Scholar 

  55. Dai JS (2015) Historical relation between mechanisms and screw theory and the development of finite displacement screws. J Mech Eng 51(13):13–26

    Article  Google Scholar 

  56. Parkin IA (1992) A third conformation with the screw systems: finite twist displacements of a directed line and point. Mech Mach Theory 27(2):177–188

    Article  Google Scholar 

  57. Hunt KH, Parkin IA (1995) Finite displacement of points, planes and lines via screw theory. Mech Mach Theory 30(2):177–192

    Article  Google Scholar 

  58. Huang CT, Chen CM (1995) The linear representation of the screw triangle-a unification of finite and infinitesimal kinematics. ASME J Mech Des 117(4):554–560

    Article  Google Scholar 

  59. Sun T, Yang SF, Huang T et al (2017) A way of relating instantaneous and finite screws based on the screw triangle product. Mech Mach Theory 108:75–82

    Article  Google Scholar 

  60. Yang SF, Sun T, Huang T et al (2016) A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mech Mach Theory 104:405–419

    Article  Google Scholar 

  61. Sun T, Huo XM (2018) Type synthesis of 1T2R parallel mechanisms with parasitic motions. Mech Mach Theory 128:412–428

    Article  Google Scholar 

  62. Yang SF (2017) Type synthesis of parallel mechanisms based upon finite screw theory. Dissertation, Tianjin University

    Google Scholar 

  63. Dai JS (2006) An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist. Mech Mach Theory 41(1):41–52

    Article  MathSciNet  MATH  Google Scholar 

  64. Dai JS, Holland N, Kerr DR (1995) Finite twist mapping and its application to planar serial manipulators with revolute joints. Proc Inst Mech Eng Part C J Mech Eng Sci 209(4):263–271

    Article  Google Scholar 

  65. Huang CT, Roth B (1994) Analytic expressions for the finite screw systems. Mech Mach Theory 29(2):207–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, T., Yang, S., Lian, B. (2020). Introduction. In: Finite and Instantaneous Screw Theory in Robotic Mechanism. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1944-4_1

Download citation

Publish with us

Policies and ethics