Skip to main content

Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes

  • Chapter
  • First Online:
Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Healthy soil ecosystem is a prerequisite for better agricultural productivity, which is governed by various local abiotic and biotic factors. Agricultural system at higher altitudes has unique characteristics and is entirely distinct from that at the lower altitude. The abiotic and biotic factors are the drivers of the soil ecosystem processes and functioning which improve plant growth and development, ultimately productivity. The key abiotic factors at higher altitudes consist of temperature, precipitation/rainfall pattern, wind profile, light intensity and duration, physiographic, etc.; and the key biotic factors are soil fauna and flora (microbes, fungi, protozoa, nematodes, etc.) influencing the soil ecosystem and agricultural productivity. These major biotic and abiotic factors interact with each other and influence the local agricultural system at higher altitude. The abiotic factors manipulate the microenvironment of soil microbial communities which eventually influence the activity of soil fauna and flora in the soil ecosystem that determines plant growth, resulting in agricultural productivity. Due to the course of these factors, decomposition pattern and rate in the ecosystem are altered, and the decomposition pattern/rate of crop residue has released the nutrients in the soil ecosystem which further are utilized by soil microbes and plants as the source of energy, resulting in increased soil productivity. In this perspective, this chapter explores the mystery of interrelationship of soil ecosystem functioning and various factors that govern the systematic agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders AM, Roe GH, Hallet B, Montgomery DR, Finnegan NJ, Putkonen, J (2006) Spatial patterns of precipitation and topography in the Himalaya. Geological Society of America special paper 398, pp. 39–53

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 189–208

    Chapter  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  • Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33:L08405

    Google Scholar 

  • Breznak J (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 209–231

    Chapter  Google Scholar 

  • Brussaard L, Aanen DK, Briones MJI, Decaens T, De Deyn GB, Fayle TM, James SW, Nobre T (2012) Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 201–232

    Chapter  Google Scholar 

  • Calderon-Cortes N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K (2012) Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst 43:45–71

    Article  Google Scholar 

  • Cobo JG, Barrios E, Kass DCL, Thomas RJ (2002) Decomposition and nutrient release by green manure in a tropical hillside agro-ecosystem. Plant Soil 240:331–342

    Article  CAS  Google Scholar 

  • Coleman DC, Wall DH (2015) Soil fauna: occurrence, biodiversity, and roles in ecosystem function. In: Soil microbiology, ecology, and biochemistry, pp. 111–149

    Chapter  Google Scholar 

  • Coleman DC, Gupta VV, Moore JC (2012) Soil ecology and agroecosystem studies. In: Microbial ecology in sustainable agroecosystems, pp. 1–21

    Google Scholar 

  • Daly E, Porporato A (2005) A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ Eng Sci 22:9–24

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69(9):1858–1868

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Ferris H, Venette RC, Van Der Meulen HR, Lau SS (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203(2):159–171

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer G, Sun L (2001) Model-based analysis of future land-use development in China. Agric Ecosyst Environ 85:163–176

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Garcıa-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall decomposition. Plant Physiol 153:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AM, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6(1):3–16

    Article  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13(6):1642–1654

    Article  PubMed  Google Scholar 

  • Istanbulluoglu E, Bras RL (2006) On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change. Water Resour Res 42:W06418

    Article  Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Rombke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. Kluwer Academic, Dordrecht, pp 61–80

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang X, Cai H, Xiao L, Xu X, Luo L (2014) Topographical characteristics of agricultural potential productivity during cropland transformation in China. Sustainability 7:96–110

    Article  Google Scholar 

  • Lupwayi NZ, Clayton GW, Odonovan JT, Harker KN, Turkington TK, Soon YK (2007) Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil Tillage Res 95:231–239

    Article  Google Scholar 

  • Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97

    Article  Google Scholar 

  • Matos ES, Mendonça ES, Lima PC, Coelho MS, Mateus RF, Cardoso IM (2008) Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Rev Bras Ciênc Solo 32:2027–2035

    Article  Google Scholar 

  • Mendonca ES, Stott DE (2003) Characteristics and decomposition rates of pruning residues from a shaded coffee system in southeastern Brazil. Agrofor Syst 57:117–125

    Article  Google Scholar 

  • Miehe G, Pendry CA, Chaudhary RP (2015) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden, Edinburgh

    Google Scholar 

  • Moore JC, De Ruiter PC (2012) Soil food webs in agricultural ecosystems. In: Microbial ecology of sustainable agroecosystems, CRC Press, Boca Raton, pp. 63–88

    Chapter  Google Scholar 

  • Mukuralinda A, Tenywa JS, Verchot L, Obua J, Namirembe S (2009) Decomposition and phosphorus release of agroforestry shrub residues and the effect on maize yield in acidic soils of Rubona, Southern Rwanda. Nutr Cycl Agroecosyst 84:155–166

    Article  Google Scholar 

  • Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33(4):161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngugi DK, Brune A (2012) Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14:860–871

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AO, Muzzi MRS, Purcino HA, Marriel IE, Sa NMH (2003) Decomposition of Arachispintoi and Hyparrheniarufa litters in monoculture and intercropped systems under lowland soil. Pesq Agropec Bras 38:1089–1095

    Article  Google Scholar 

  • Rawat DS, Kharwal AD (2016) Folk knowledge on indigenous practices in North-West Himalaya with special reference to Himachal Pradesh (H.P.), India. Int J Adv Sci Res 8:6–12

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Robertson FA, Morgan WC (1996) Effects of management history and legume green manure on soil microrganisms under organic vegetable production. Aust J Soil Res 34:427–440

    Article  Google Scholar 

  • Roe GH, Montgomery DR, Hallet B (2003) Orographic precipitation and the relief of mountain ranges. J Geophys Res 108:2315

    Article  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    Article  CAS  PubMed  Google Scholar 

  • Scharroba A, Dibbern D, Hunninghaus M, Kramer S, Moll J, Butenschoen O, Bonkowski M, Buscot F, Kandeler E, Koller R, Kruge D, Lueders T, Scheu S, Ruess L (2012) Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biol Biochem 50:1–11

    Article  CAS  Google Scholar 

  • Sharma PD (2004) Managing natural resources in Indian Himalayas. J Indian Soc Soil Sci 52(4):314–331

    Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS (2014) Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat Clim Change 4(6):456–461

    Article  Google Scholar 

  • Singh SP, Singh R, Gumber S, Bhatt S (2017) Two principal precipitation regimes in Himalayas and their influence on tree distribution. Trop Ecol 58:679–691

    Google Scholar 

  • Stenburg M, Shoshny M (2001) Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol Res 16(2):335–345

    Article  Google Scholar 

  • Středová H, Spáčilová B, Podhrázská J, Chuchma F (2015) A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils. Mor Geog Rep 23:56–62

    Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1998) Principles and applications of soil microbiology. Prentice-Hall, Upper Saddle River, NJ, p 550

    Google Scholar 

  • Thonnissen C, Midmore DJ, Ladha JK, Olk DC, Schmidhalter U (2000) Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agron J 92:253–260

    Article  Google Scholar 

  • Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 123:131–142

    Article  Google Scholar 

  • Van Pelt RS, Zobeck TM, Baddock MC, Cox JJ (2010) Design, construction, and calibration of a portable boundary layer wind tunnel for field use. Am Soc Agric Biol Eng 53:1413–1422

    Google Scholar 

  • Wang C, Zhao CY, Xu ZL, Wang Y, Peng HH (2013) Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. J Arid Land 5(2):207–219

    Article  Google Scholar 

  • Wang J, Cao P, Hu H, Li J, Han L (2014) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegylaon the Tibetan Plateau. Microb Ecol 69:135–145

    Article  PubMed  Google Scholar 

  • Williams CJ, Mcnamara JP, Chandler DG (2009) Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain. Hydrol Earth Syst Sci 13(7):1325–1336

    Article  Google Scholar 

  • Yan P, Shen C, Fan L, Li X, Zhang L, Zhang L, Han W (2018) Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric Ecosyst Environ 254:20–25

    Article  CAS  Google Scholar 

  • Zaharah AR, Bah AR (1999) Patterns of decomposition and nutrient release by fresh Gliciridia (Gliciridiasepium) leaves in an Ultisol. Nutr Cycl Agroecosyst 55:269–277

    Article  CAS  Google Scholar 

  • Zhu JJ, Liu ZG, Li XF, Takeshi M, Yutaka G (2004) Review: effects of wind on trees. J For Res 15:153–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Kumar, A., Jeena, N., Singh, R., Singh, H. (2020). Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes. In: Goel, R., Soni, R., Suyal, D. (eds) Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_4

Download citation

Publish with us

Policies and ethics