Skip to main content

Medical Image Segmentation Using Deep Neural Networks with Pre-trained Encoders

  • Chapter
  • First Online:
Deep Learning Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1098))

Abstract

With the growth of popularity of deep neural networks for image analysis, segmentation is the most common subject of studies applying deep learning to medical imaging and establishing state-of-the-art performance results in many applications. However, it still remains a challenging problem, for which performance improvements can potentially benefit diagnosis and other clinical practice outcomes. In this chapter, we consider two applications of multiple deep convolutional neural networks to medical image segmentation. First, we describe angiodysplasia lesion segmentation from wireless capsule endoscopy videos. Angiodysplasia is the most common vascular lesion of the gastrointestinal tract in the general population and is important to detect as it may indicate the possibility of gastrointestinal bleeding and/or anemia. As a baseline, we consider the U-Net model and then we demonstrate further performance improvements by using different deep architectures with ImageNet pre-trained encoders. In the second example, we apply these models to semantic segmentation of robotic instruments in surgical videos. Segmentation of instruments in the vicinity of surgical scenes is a challenging problem that is important for intraoperative guidance that can help the decision-making process. We achieve highly competitive performance for binary as well as for multi-class instrument segmentation. In both applications, we demonstrate that networks that employ ImageNet pre-trained encoders consistently outperform the U-Net architecture trained from scratch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Greenspan, B. Van Ginneken, R.M. Summers, Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  2. T. Ching, D.S. Himmelstein, B.K. Beaulieu-Jones, A.A. Kalinin, B.T. Do, G.P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M.M. Hoffman, W. Xie, G.L. Rosen, B.J. Lengerich, J. Israeli, J. Lanchantin, S. Woloszynek, A.E. Carpenter, A. Shrikumar, J. Xu, E.M. Cofer, C.A. Lavender, S.C. Turaga, A.M. Alexandari, Z. Lu, D.J. Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L.K. Wiley, M.H.S. Segler, S.M. Boca, S.J. Swamidass, A. Huang, A. Gitter, C.S. Greene, Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141) (2018)

    Google Scholar 

  3. G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  4. A. Rakhlin, A. Shvets, V. Iglovikov, A.A. Kalinin, Deep convolutional neural networks for breast cancer histology image analysis, in International Conference Image Analysis and Recognition (Springer, 2018), pp. 737–744

    Google Scholar 

  5. A. Rakhlin, A.A. Shvets, A.A. Kalinin, A. Tiulpin, V.I. Iglovikov, S. Nikolenko, Breast tumor cellularity assessment using deep neural networks, in 2019 IEEE International Conference on Computer Vision Workshops (ICCVW) (IEEE, 2019)

    Google Scholar 

  6. A. Tiulpin, J. Thevenot, E. Rahtu, P. Lehenkari, S. Saarakkala, Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8, 1727 (2018)

    Article  Google Scholar 

  7. V.I. Iglovikov, A. Rakhlin, A.A. Kalinin, A.A. Shvets, Paediatric bone age assessment using deep convolutional neural networks, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (Springer, 2018), pp. 300–308

    Google Scholar 

  8. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241

    Google Scholar 

  9. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440

    Google Scholar 

  10. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  11. A. Rajkomar, S. Lingam, A.G. Taylor, M. Blum, J. Mongan, High-throughput classification of radiographs using deep convolutional neural networks. J. Digit. Imaging 30(1), 95–101 (2017)

    Article  Google Scholar 

  12. V. Iglovikov, A. Shvets, Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation (2018), arXiv:1801.05746

  13. A.A. Shvets, A. Rakhlin, A.A. Kalinin, V.I. Iglovikov, Automatic instrument segmentation in robot-assisted surgery using deep learning, in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2018), pp. 624–628

    Google Scholar 

  14. A. Chaurasia, E. Culurciello, Linknet: Exploiting encoder representations for efficient semantic segmentation (2017), arXiv:1707.03718

  15. V. Iglovikov, S. Mushinskiy, V. Osin, Satellite imagery feature detection using deep convolutional neural network: a kaggle competition (2017), arXiv:1706.06169

  16. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014), arXiv:1409.1556

  17. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

    Google Scholar 

  18. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization (2014), arXiv:1412.6980

  19. P.G. Foutch, D.K. Rex, D.A. Lieberman, Prevalence and natural history of colonic angiodysplasia among healthy asymptomatic people. Am. J. Gastroenterol. 90(4) (1995)

    Google Scholar 

  20. J. Regula, E. Wronska, J. Pachlewski, Vascular lesions of the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 22(2), 313–328 (2008)

    Article  Google Scholar 

  21. S.L. Triester, J.A. Leighton, G.I. Leontiadis, D.E. Fleischer, A.K. Hara, R.I. Heigh, A.D. Shiff, V.K. Sharma, A meta-analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with obscure gastrointestinal bleeding. Am. J. Gastroenterol. 100(11), 2407 (2005)

    Article  Google Scholar 

  22. R. Marmo, G. Rotondano, R. Piscopo, M. Bianco, L. Cipolletta, Meta-analysis: capsule enteroscopy vs. conventional modalities in diagnosis of small bowel diseases. Aliment. Pharmacol. Ther. 22(7), 595–604 (2005)

    Article  Google Scholar 

  23. MICCAI 2017 Endoscopic Vision Challenge: Angiodysplasia Detection and Localization, https://endovissub2017-giana.grand-challenge.org/angiodysplasia-etisdb/

  24. D.K. Iakovidis, A. Koulaouzidis, Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12(3), 172 (2015)

    Article  Google Scholar 

  25. M. Mackiewicz, J. Berens, M. Fisher, Wireless capsule endoscopy color video segmentation. IEEE Trans. Med. Imaging 27(12), 1769–1781 (2008)

    Article  Google Scholar 

  26. A. Karargyris, N. Bourbakis, Wireless capsule endoscopy and endoscopic imaging: a survey on various methodologies presented. IEEE Eng. Med. Biol. Mag. 29(1), 72–83 (2010)

    Article  Google Scholar 

  27. P. Szczypiński, A. Klepaczko, M. Pazurek, P. Daniel, Texture and color based image segmentation and pathology detection in capsule endoscopy videos. Comput. Methods Programs Biomed. 113(1), 396–411, (2014), http://www.sciencedirect.com/science/article/pii/S0169260712002192

  28. D.S. Mishkin, R. Chuttani, J. Croffie, J. DiSario, J. Liu, R. Shah, L. Somogyi, W. Tierney, L.M.W.K. Song, B.T. Petersen, Asge technology status evaluation report: wireless capsule endoscopy. Gastrointest. Endosc. 63(4), 539–545 (2006)

    Article  Google Scholar 

  29. G. Bradski, The OpenCV Library, in Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  30. B. Münzer, K. Schoeffmann, L. Böszörmenyi, Content-based processing and analysis of endoscopic images and videos: a survey. Multimed. Tools Appl. 77(1), 1323–1362 (2018)

    Article  Google Scholar 

  31. S. Speidel, M. Delles, C. Gutt, R. Dillmann, Tracking of instruments in minimally invasive surgery for surgical skill analysis, in Medical Imaging and Augmented Reality (Springer, Berlin, 2006), pp. 148–155

    Google Scholar 

  32. C. Doignon, F. Nageotte, M. De Mathelin, Segmentation and guidance of multiple rigid objects for intra-operative endoscopic vision, in Dynamical Vision. (Springer, Berlin, 2007), pp. 314–327

    Google Scholar 

  33. Z. Pezzementi, S. Voros, G.D. Hager, Articulated object tracking by rendering consistent appearance parts, in IEEE International Conference on Robotics and Automation, 2009. ICRA’09. (IEEE, 2009), pp. 3940–3947

    Google Scholar 

  34. D. Bouget, R. Benenson, M. Omran, L. Riffaud, B. Schiele, P. Jannin, Detecting surgical tools by modelling local appearance and global shape. IEEE Trans. Med. Imaging 34(12), 2603–2617 (2015)

    Article  Google Scholar 

  35. L.C. García-Peraza-Herrera, W. Li, L. Fidon, C. Gruijthuijsen, A. Devreker, G. Attilakos, J. Deprest, E.B.V. Poorten, D. Stoyanov, T. Vercauteren, S. Ourselin, Toolnet: Holistically-nested real-time segmentation of robotic surgical tools, in Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (2017), pp. 5717–5722

    Google Scholar 

  36. M. Attia, M. Hossny, S. Nahavandi, H. Asadi, Surgical tool segmentation using a hybrid deep cnn-rnn auto encoder-decoder, in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2017), pp. 3373–3378

    Google Scholar 

  37. D. Pakhomov, V. Premachandran, M. Allan, M. Azizian, N. Navab, Deep residual learning for instrument segmentation in robotic surgery (2017), arXiv:1703.08580

  38. M. Allan, A. Shvets, T. Kurmann, Z. Zhang, R. Duggal, Y.-H. Su, N. Rieke, I. Laina, N. Kalavakonda, S. Bodenstedt, et al., 2017 robotic instrument segmentation challenge (2019), arXiv:1902.06426

  39. A. Buslaev, A. Parinov, E. Khvedchenya, V.I. Iglovikov, A.A. Kalinin, Albumentations: fast and flexible image augmentations (2018), arXiv:1809.06839

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr A. Kalinin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalinin, A.A., Iglovikov, V.I., Rakhlin, A., Shvets, A.A. (2020). Medical Image Segmentation Using Deep Neural Networks with Pre-trained Encoders. In: Wani, M., Kantardzic, M., Sayed-Mouchaweh, M. (eds) Deep Learning Applications. Advances in Intelligent Systems and Computing, vol 1098. Springer, Singapore. https://doi.org/10.1007/978-981-15-1816-4_3

Download citation

Publish with us

Policies and ethics