Skip to main content

Current Perspectives and Advancements of Perovskite Photovoltaic Cells

  • Conference paper
  • First Online:
Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1089))

  • 471 Accesses

Abstract

Perovskite photovoltaic cells have pulled in much consideration on account of their fast ascent to 23% PCE. Here, in this paper the quick development of PSCs has been reviewed, as they entered into the stage that could upgrade the industry of photovoltaics. Specifically, in this paper, the recent advancements in the architectures of perovskite photovoltaic cells, various blends used to develop perovskite photoactive layers have been portrayed. The remarkable advances of long-haul strength are talked about, and this paper gives an attitude towards what the eventual fate of PSCs may soon bring the photovoltaic group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (IEA): Solar Photovoltaic Energy. Technology Roadmap (2014)

    Google Scholar 

  2. OECD, IEA: Renewable Energy. Medium-Term Market Report 2014. Market Analysis and Forecasts to 2020. Executive Summary (2014)

    Google Scholar 

  3. Todorov, T., Gunawan, O., Guha, S.: A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol. Syst. Des. Eng. 1, 370–376 (2016)

    Article  Google Scholar 

  4. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  5. https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018

  6. Domanski, K., et al.: Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016)

    Article  Google Scholar 

  7. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)

    Google Scholar 

  8. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338 (2012)

    Google Scholar 

  9. Burschka, J., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  10. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seok, S.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)

    Google Scholar 

  11. Yang, W.S., et al.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  Google Scholar 

  12. Saliba, M., et al.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)

    Article  Google Scholar 

  13. Liu, M.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  14. Zhou, H.P., et al.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    Article  Google Scholar 

  15. Anaraki, E.H., et al.: Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. Energy Environ. Sci 9, 3128–3134 (2016)

    Article  Google Scholar 

  16. Malinkiewicz, O., et al.: Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014)

    Article  Google Scholar 

  17. Jeng, J.Y., et al.: CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25(27), 3727–3732 (2013)

    Article  Google Scholar 

  18. Sun, S., et al.: The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014)

    Article  Google Scholar 

  19. Nie, W., et al.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)

    Article  Google Scholar 

  20. H.-S. Kim, et al.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2 (2012)

    Google Scholar 

  21. Yi, C., Luo, J.: Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016)

    Google Scholar 

  22. David, P., et al.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2017)

    Google Scholar 

  23. Snaith, H.J., et al.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    Article  Google Scholar 

  24. Sum, T.C., Mathews, N.: Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518–2534 (2014)

    Google Scholar 

  25. Grätzel, M., Gao, P.: Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014)

    Google Scholar 

  26. Boix, P.P., Agarwala, S., Koh, T.M., Mathews, N., Mhaisalkar, S.G.: Perovskite solar cells: beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6, 898–907 (2015)

    Article  Google Scholar 

  27. Bai, S., Wu, Z., et al.: Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6, 10505–10510 (2014)

    Google Scholar 

  28. Zhang, M., Yu, H., Lyu, M., Wang, Q., Yun, J.-H., Wang, L.: Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 50, 11727–11730 (2014)

    Article  Google Scholar 

  29. Qiu, Y., Qiu, J., et al.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and 1D TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013)

    Google Scholar 

  30. Jung, H.S., Park, N.G.: Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015)

    Article  Google Scholar 

  31. Heo, J.H.: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015)

    Google Scholar 

  32. Grätzel, M., et al.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014)

    Article  Google Scholar 

  33. Holliman, P.J., Williams, A.E.: Perovskite processing for photovoltaics: a spectro-thermal evaluation. J. Mater. Chem. A 2, 19338–19346 (2014)

    Google Scholar 

  34. Unger, E.L., et al.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014)

    Article  Google Scholar 

  35. Minemoto, T., Murata, M.: Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 14, 1428–1433 (2014)

    Article  Google Scholar 

  36. Stranks, S.D., Eperon, G.E.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014)

    Google Scholar 

  37. Lee, J.W., Seol, D.J., Cho, A.N., Park, N.G.: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014)

    Article  Google Scholar 

  38. Wang, F., Yu, H., Xu, H., Zhao, N.: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 1120–1126 (2015)

    Article  Google Scholar 

  39. Bai, Y., Zhu, Z., et al.: Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28, 6478–6484 (2012)

    Google Scholar 

  40. Matsui, T., Seo, J.-Y., et al.: Ionic liquid control crystal growth to enhance planar perovskite solar cells. Adv. Energy Mater. 6 (2016)

    Google Scholar 

  41. Rub, M.A., Ameen, S., et al.: Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. CAMSUSCHEM 8, 10–27 (2016)

    Google Scholar 

  42. Shirahata, Y., Hamatani, T.: Arsenic and chlorine co-doping to CH3NH3PbI3 perovskite solar cells. Adv. Mater. Phys. Chem. 7 (2013)

    Google Scholar 

  43. Abate, A., et al.: Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013)

    Article  Google Scholar 

  44. Staff, D.R., Abate, A., et al.: Influence of ionizing dopants on charge transport in organic semiconductors. Phys. Chem. Chem. Phys. 16, 1132–1138 (2014)

    Google Scholar 

  45. Park, S., et al.: Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chem. Sci. 7, 5517–5522 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandni Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devi, C., Mehra, R. (2020). Current Perspectives and Advancements of Perovskite Photovoltaic Cells. In: Pati, B., Panigrahi, C., Buyya, R., Li, KC. (eds) Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1089. Springer, Singapore. https://doi.org/10.1007/978-981-15-1483-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1483-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1482-1

  • Online ISBN: 978-981-15-1483-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics