Skip to main content

Molecular Breeding of Cotton for Drought Stress Tolerance

  • Chapter
  • First Online:

Abstract

Availability of freshwater to crops is declining year by year, so there is a need to exploit genetic mechanism of drought tolerance in crops including cotton. Drought-tolerant cultivars may be tailored if generated data regarding inheritance of drought-related traits to tolerance is practically used. The complexity in inheritance of drought tolerance has been a main reason of slow progress. Although a lot of conventional and nonconventional research work has been conducted for the traits related to abiotic stress in cotton, fruitful field results have not been obtained. There is a need to understand drought stress and mechanisms adopted by cotton against drought stress. These include morphological, physiological, biochemical, and genetic responses in cotton. Identification of the important genes related to drought tolerance would also be a major contribution. The impactful genes and major QTLs could be stacked in a single cotton plant, using gene pyramiding, and this may produce the future cotton plant for upcoming adverse environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

Ascorbic acid

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

EL:

Electrolyte leakage

GA:

Gibberellic acid

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GWAS:

Genome-wide association study

H2O2 :

Hydrogen peroxide

HO :

Hydroxyl radical

IPT:

Isopentenyltransferase

JA:

Jasmonic acid

LEA:

Late embryogenesis abundant

MAS:

Marker-assisted selection

NO :

Nitric oxide

1O2 :

Singlet oxygen

O2 •− :

Superoxide anion radical

ROS:

Reactive oxygen species

SA:

Salicylic acid

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Article  Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Article  Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cer Agron Moldova XLVII(4):71–81

    Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    Article  CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Article  Google Scholar 

  • Burke JJ, O’Mahony PJ (2001) Protective role in acquired thermotolerance of developmentally regulated heat shock proteins in cotton seeds. J Cotton Sci 5:174–183

    CAS  Google Scholar 

  • Chen X, Wang J, Zhu M, Jia H, Liu D, Hao L, Guo X (2015) A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development. Plant Sci 240:10–24

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One 10:e0143022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai Y, Yang J, Hu W, Zahoor R, Chen B, Zhao W, Meng Y, Zhou Z (2017) Simulative global warming negatively affects cotton fiber length through shortening fiber rapid elongation duration. Sci Rep 7:9264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diouf L, Pan Z, He SP, Gong WF, Jia YH, Magwanga RO, Romy KRE, Or Rashid H, Kirungu JN, Du X (2017) High-density linkage map construction and mapping of salt-tolerant QTLs at seedling stage in upland cotton using genotyping by sequencing (GBS). Int J Mol Sci 18:E2622

    Article  PubMed  CAS  Google Scholar 

  • Ennahli S, Earl HJ (2005) Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci 45:2374–2382

    Article  CAS  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan M, Ma F, Prodhan Z, Li F, Shen H, Chen Y, Wang X (2018) Molecular and physio-biochemical characterization of cotton species for assessing drought stress tolerance. Int J Mol Sci 19:2636

    Article  PubMed Central  CAS  Google Scholar 

  • He Q, Jones DC, Li W, Xie F, Ma J, Sun R, Wang Q, Zhu S, Zhang B (2016) Genome-wide identification of R2R3-MYB genes and expression analyses during abiotic stress in Gossypium raimondii. Sci Rep 6:22980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou S, Zhu G, Li Y, Li W, Fu J, Niu E, Li L, Zhang D, Guo W (2018) Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.). Front Plant Sci 9:1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Jawdat D, Allaf A, Taher N, Al-Zier A, Morsel N, Ajii Z, Al-Safadi B (2018) Cotton flowering behavior, fiber traits and gene expression under water-shortage stress. Adv Hortic Sci 32:79–92

    Google Scholar 

  • Khan MB, Khaliq A, Ahmad S (2004) Performance of mashbean intercropped in cotton planted in different planting patterns. J Res (Sci) 15(2):191–197

    Google Scholar 

  • Khan A, Pan X, Najeeb U, Tan DKY, Fahad S, Zahoor R, Luo H (2018) Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223(2):329–339

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long L, Gao W, Xu L, Liu M, Luo X, He X, Yang X, Zhang X, Zhu L (2014) GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tissue Organ Cult 116:153–162

    Article  CAS  Google Scholar 

  • Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8:e68503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Diouf L, Dong Q, Hu Y, Cai X, Xu Y, Hou Y, Zhou Z, Wang X, Wang K, Liu F (2018a) GBS mapping and analysis of genes conserved between Gossypium tomentosum and Gossypium hirsutum cotton cultivars that respond to drought stress at the seedling stage of the BC(2)F(2) generation. Int J Mol Sci 19:E1614

    Article  PubMed  CAS  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F (2018b) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqbool A, Zahur M, Irfan M, Qaiser U, Rashid B, Husnain T, Riazuddin S (2007) Identification, characterization and expression of drought related alpha-crystalline heat shock protein gene (from Desi cotton). Crop Sci 47(6):2437

    Article  CAS  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Mittal A, Gampala SS, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Zhang S, Liu S, Ma H, Chen J, Shen Q, Ge C, Zhang X, Pang C, Zhao X (2018) The compensation effects of physiology and yield in cotton after drought stress. J Plant Physiol 224:30–48

    Article  PubMed  CAS  Google Scholar 

  • Pandey D, Goswami C, Kumar B (2003) Physiological effects of plant hormones in cotton under drought. Biol Plantarum 47:535–540

    Article  CAS  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar G, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep 1:37–48

    Article  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 30:619–627

    Article  CAS  Google Scholar 

  • Pilon C, Oosterhuis DM, Ritchie GL, Paiva EA (2015) Photosynthetic efficiency and antioxidant activity of cotton under drought stress during early floral bud development. Am J Exp Agric 9. http://www.journalrepository.org/media/journals/AJEA_2/2015/Sep/Pilon962015AJEA21477.pdf

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253–254:94–113

    Article  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Drought stress tolerance in plants, vol 1. Springer, New York, pp 1–16. https://www.springer.com/gp/book/9783319288970

    Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BF, Mornhinweg DW (1988) Water relations in winter wheat as drought resistance indicators. Crop Sci 28:526–531

    Article  Google Scholar 

  • Selvam JN, Kumaraeadibel N, Gopikrishnan A, Kumar BK, Ravikesavan R, Boopathi MN (2009) Identification of a noval drought tolerance gene in (Gossypium hirsutum L.cv) KC3. Communications in biometry and crop. Sciences 4(1):9–13

    Google Scholar 

  • Singh R, Pandey N, Naskar J, Shirke PA (2015) Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species. Protoplasma 252:423–438

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Norvell E, Wijewardana C, Wallace T, Chastain D, Reddy K (2018) Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. J Agron Crop Sci 204:467–476

    Article  Google Scholar 

  • Smith CW (1995) Cotton (Gossypium hirsutum L.). In: Crop production, evolution, history and technology. John Wiley and Sons. Inc., New York, USA

    Google Scholar 

  • Soomro MH, Markhand GS, Soomro BA (2011) Screening Pakistani cotton for drought tolerance. Pak J Bot 44:383–388

    Google Scholar 

  • Statista (2018). http://www.statista.com/statistics/263055/cotton-productionworldwide-by-top-countries/

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43

    Article  Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391

    Google Scholar 

  • Voloudakis AE, Kosmas SA, Tsakas S, Eliopoulos E, Loukas M, Kosmidou K (2002) Expression of selected drought-related genes and physiological response of Greek cotton varieties. Funct Plant Biol 29:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Isoda A, Li MS, Wang DL (2007) Growth and eco-physiological performance of cotton under water stress conditions. Agric Sci China 6:949–955

    Article  Google Scholar 

  • Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X (2016a) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Gao M, Ji S, Wang S, Meng Y, Zhou Z (2016b) Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiol Biochem 107:137–146

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453–469

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011) Creating drought-and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6:861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zou D, Li Y, Sun X, Wang NN, Gong SY, Zheng Y, Li XB (2014) GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One 9:e95642

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Mi X, Chen C, Wang H, Guo W (2018) Identification on mitogen-activated protein kinase signaling cascades by integrating protein interaction with transcriptional profiling analysis in cotton. Sci Rep 8:8178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Sun L, Kuppu S, Hu R, Mishra N, Smith J, Esmaeili N, Herath M, Gore MA, Payton P, Shen G, Zhang H (2018a) The yield difference between wild-type cotton and transgenic cotton that expresses IPT depends on when water-deficit stress is applied. Sci Rep 8:2538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Zhao J, Abbas HMK, Liu Y, Cheng M, Huang J, Cheng W, Wang B, Bai C, Wang G (2018b) Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. Theor Appl Genet 131:2145–2156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Saleem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saleem, M.A., Qayyum, A., Malik, W., Amjid, M.W. (2020). Molecular Breeding of Cotton for Drought Stress Tolerance. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_24

Download citation

Publish with us

Policies and ethics