Skip to main content

Cotton-Based Cropping Systems and Their Impacts on Production

  • Chapter
  • First Online:
Book cover Cotton Production and Uses

Abstract

Cotton farming symbolizes single largest use of arable land for fiber production on earth, and cotton-based cropping systems are practiced under diverse agro-climatic environments in more than 100 countries. World cotton production has escalated in recent past and has undergone numerous technological transformations and socioeconomic interventions in quest of productivity and sustainability. Cotton-based cropping systems range from low-input rainfed systems in Australia and Africa to highly mechanized intensive farming systems in the United States, Brazil, and China. In India and Pakistan, multiplicity of cotton varieties, weather extremes, uncertainty of climatic optima, spurious seeds, non-remunerative markets, and low quality plus adulterated chemicals or pesticides are key problems leading to low yields besides net profits in otherwise high productivity cotton-based cropping systems. Resource conserving, eco-efficient, climate smart, and economically viable cropping systems that rotate/intercrop cotton with cereals, oilseeds, and legumes are required. Relay or intercropping and crop rotations will lead to the ecological intensification of cotton-based cropping systems. An ideal cotton-based cropping system should aim at higher yields and net profits per unit area, bring stability into the production system, ensure optimal utilization of the available resources, be able to meet domestic requirements of farmer, and avoid ecological uncertainty in the form of shifts in insect pests or weed populations or evolution of pesticide resistance in the long run. Another area requiring significant improvement is integrating current curative pest management options with other cultural methods to avoid insecticide/herbicide resistance development in an era of transgenics. The transgenics have their own pros and cons, and due deliberations in the best interest of agro-ecosystem sustainability and small landholders be made with involvement of all stakeholders. Biotech seed industry should plan safe mechanisms for herbicide-tolerant crop development to evade resistance development or gene introgression in weeds. Productivity and profitability of cotton-based cropping systems needs to be explored with greater ecological orientation under conventional and organic management systems. This chapter documents the productivity and resource use efficiency of cotton-based cropping systems based on existing agronomic and experimental evidences. Crop growth and development, productivity, quality, resource use efficiencies, and profitability of various systems have been discussed at the plant, field, and system levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

g ha−1 :

Gram per hectare

K:

Potassium

kg ha−1 :

Kilogram per hectare

t ha−1 :

Tons per hectare

ATER:

Area time equivalent ratio

LER:

Land equivalent ratio

LUE:

Light use efficiency

N:

Nitrogen

NUE:

Nitrogen use efficiency

P:

Phosphorus

PAR:

Photosynthetically active radiation

Zn:

Zinc

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman NS, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plan Theory 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman SN (2014) Response of cotton crop to exogenous application of glycine betaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cercetări Agronomice în Moldova XLVII(4):71–81

    Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Article  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib urRehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah HUR, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    Article  CAS  Google Scholar 

  • Anonymous (2018) (https://en.wikipedia.org/wiki/Cotton_production_in_Pakistan)

  • Aasim M, Umer EM, Karim A (2008) Yield and competition indices of intercropping cotton (Gossypium hirsutum L.) using different planting patterns. Tarim Bilim Derg 14:326–333

    Article  Google Scholar 

  • Abedullah KS, Qaim M (2015) Bt cotton, pesticide use and environmental efficiency in Pakistan. J Agric Econ 66(1):66–86

    Article  Google Scholar 

  • Abid M, Ahmed N, Qayyum MF, Shaaban M, Rashid A (2013) Residual and cumulative effect of fertilizer zinc applied in wheat-cotton production system in an irrigated aridisol. Plant Soil Environ 11:505–510

    Article  Google Scholar 

  • Ahmad S, Cheema HMN, Khan AA, Khan RSA, Ahmad JN (2019) Resistance status of Helicoverpa armigera against Bt cotton in Pakistan. Transgenic Res 28(2):199–212

    Article  CAS  PubMed  Google Scholar 

  • Aladakatti YR, Hallikeri SS, Nandagavi RA, Hugar AY, Naveen NE (2011) Effect of intercropping of oilseed crops on growth, yield and economics of cotton (Gossypium hirsutum) under rainfed conditions. Karnataka J Agric Sci 24:280–282

    Google Scholar 

  • Alvi AHK, Sayyed AH, Naeem M, Ali M (2012) Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan. PLoS One 7:e47309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bange MP, Carberry PS, Marshall J, Milroy SP (2005) Row configuration as a tool for managing rain-fed cotton systems: review and analysis. Aust J Exp Agric 45:65–77

    Google Scholar 

  • Blaise D (2012) Fertilizer-K recommendation for cotton grown on Vertisols: is there a need for revision? In: IPI-FAI-IPNI Roundtable on Refinement of K recommendations in Vertisols, 20 March 2012, New Delhi. http://www.ipipotash.org/udocs/presentation_dr_blaise.pdf

  • Blaise D (2017) Cotton based cropping systems. In: Ramesh K, Biswas AK, Lakaria B, Srivastava S, Patra AK (eds) Enhancing nutrient use efficiency. New India Publishing Agency, New Delhi, pp 369–384

    Google Scholar 

  • Braunack MV (2013) Cotton farming systems in Australia: factors contributing to changed yield and fibre quality. Crop Pasture Sci 64:834–844

    Article  Google Scholar 

  • Bryson CT, Salisbury C, McCloskey WB (1999) Weeds and their control. In: Cothren JT, Smith CW (eds) Cotton: origin, technology, and production. John Wiley & Sons, New York, pp 617–658

    Google Scholar 

  • Buttar GS, Thind HS, Sekhon KS, Kaur A, Gill RS, Sidhu BS, Aujla MS (2017) Management of saline-sodic water in cotton-wheat cropping system. J Agric Sci Technol 19:465–474

    Google Scholar 

  • Cao GL, Zhang XY, Wang YQ, Zheng FC (2008) Estimation of emissions from field burning of crop straw in China. Chin Sci Bull 53:784–790

    Article  CAS  Google Scholar 

  • Charles GW, Taylor IN (2004) Herbicide resistance and species shift in cotton: The need for an Integrated Weed Management (IWM) approach. In: Swanepoel A (ed) Proc. World Cotton Research Conf.–3, Cotton production for the new millenium, Cape Town, 2003, ARC, Institute for Industrial Crops, Pretoria, pp. 817–828

    Google Scholar 

  • Cheema HMN, Khan AA, Khan MI, Aslam U, Rana IA, Khan IA (2015) Assessment of Bt cotton genotypes for the Cry1Ac transgene and its expression. J Agric Sci 154:109–117

    Article  CAS  Google Scholar 

  • Choudhary R, Singh P, Sidhu HS, Nandala DP, Jat HS, Singh Y, Jat ML (2016) Evaluation of tillage and crop establishment methods integrated with relay seeding of wheat and mungbean for sustainable intensification of cotton-wheat system in South Asia. Field Crops Res 199:31–41

    Article  Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, Van Der Werf W (2014) Intercropping enhances soil carbon and nitrogen. Glob Chang Biol 21:1715–1726

    Article  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Dai JL, Dong HZ (2014) Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Res 155:99–110

    Article  Google Scholar 

  • Das A, Prasad M, Shivay YS, Subha KM (2004) Productivity and sustainability of cotton (Gossypium hirsutum L.)–wheat (Triticuma estivum L.) cropping system as influenced by prilled urea, farmyard manure and azotobacter. J Agron Crop Sci 190:298–304

    Article  Google Scholar 

  • Das TK, Bhattacharyya R, Sudhishri S, Sharma AR, Saharawat YS, Bandyopadhyay KK, Sepat S, Bana RS, Aggarwal P, Sharma RK, Bhatia A, Singh G, Datta SP, Kar A, Singh B, Singh P, Pathak H, Vyas AK, Jat ML (2014) Conservation agriculture in an irrigated cotton–wheat system of the western Indo-Gangetic Plains: Crop and water productivity and economic profitability. Field Crops Res 158:24–33

    Article  Google Scholar 

  • Daujanov A, Groeneveld R, Pulatov A, Heijman WJM (2016) Cost-benefit analysis of conservation agriculture implementation in Syrdarya Province of Uzbekistan. Visegrad J Bioecon Sustain Dev 5:48–52

    Article  Google Scholar 

  • Deguine JP, Ferron P, Russell D (2008) Sustainable pest management for cotton production. A review. Agron Sustain Dev 28:113–137

    Article  Google Scholar 

  • Dhaliwal NS, Sandhu BS (2015) Yield production and economics of different cropping system in south-western part of Punjab. Int Res J Econ Stat 6:414–418

    Google Scholar 

  • Dowling D (2002) Cotton year book. The Australian Cotton Grower, Toowoomba

    Google Scholar 

  • Du X, Chen B, Shen T, Zhang Y, Zhou Z (2015) Effect of cropping system on radiation use efficiency in double-cropped wheat–cotton. Field Crops Res 170:21–31

    Article  Google Scholar 

  • Du X, Chen B, Zhang Y, Zhao W, Shen T, Zhou Z, Meng Y (2016) Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat–cotton cropping systems. Eur J Agron 75:72–79

    Article  CAS  Google Scholar 

  • Duraimurugan P, Regupathy A (2005) Push-pull strategy with trap crops, neem and nuclear polyhedrosis virus for insecticide resistance management in Helicoverpa armigera (Hubner) in cotton. Am J Appl Sci 2:1042–1048

    Article  Google Scholar 

  • Economou G, Bilalis D, Avgoulas C (2005) Weed flora distribution in Greek cotton fields and its possible influence by herbicides. Phytoparasitica 33:406–419

    Article  Google Scholar 

  • Farrell R (2017) Australia: cotton and products annual (April 2017). USDA Foreign agricultural service, global agriculture information network. Report No. As1705. p. 7

    Google Scholar 

  • Feike T, Doluschitz R, Chen Q, Graeff-Hönninger S, Claupein W (2012) How to overcome the slow death of intercropping in the North China Plain. Sustainability 4:2550–2565

    Article  Google Scholar 

  • Feng L, Wang G, Han Y, Li Y, Zhu Y, Zhou Z, Cao W (2017) Effects of planting pattern on growth and yield and economic benefits of cotton in a wheat-cotton double cropping system versus monoculture cotton. Field Crops Res 213:100–108

    Article  Google Scholar 

  • Fernandes FS, Godoy WAC, Ramalho FS, Garcia AG, Santos BDB, Malaquias JB (2018) Population dynamics of Aphis gossypii Glover and Aphis craccivora Koch (Hemiptera: Heteroptera: Aphididae) in sole and intercropping systems of cotton and cowpea. Annals Braz Acad Sci 90:311–323

    Article  Google Scholar 

  • Fernandes FS, Ramalho FS, Malaquias JB, Godoy WAC, Santos BDB (2015) Interspecific associations between Cycloneda sanguinea and two aphid species (Aphis gossypii and Hyadaphis foeniculi) in sole-crop and fennel-cotton intercropping systems. PLoS One 10(8):e0131449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forster D, Andres C, Verma R, Zundel C, Messmer MM, Mäder P (2014) Productivity and profitability of cotton-based production systems under organic and conventional management in India. In: Rahmann G, Aksoy U (eds) Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13–15 Oct, Istanbul, Turkey (eprint ID 23660) pp. 647–650

    Google Scholar 

  • Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet EP, Navas ML, Wery J, Louarn G, Malézieux E, Pelzer E, Prudent M, Ozier-Lafontaine H (2015) Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron Sustain Dev 35:607–623

    Article  Google Scholar 

  • Gahukar RT (2017) Cotton based cropping systems in Maharashtra: economic analysis and future needs. J Cotton Res Dev 31:152–156

    Google Scholar 

  • Ghosh PK, Bandypadhyay KK, Wanjari RH, Manna MC, Mishra AK, Mohanty M (2008) Legume effect for enhancing productivity and nutrient-use efficiency in major cropping systems—an Indian perspective: a review. J Sustain Agric 30:59–86

    Article  Google Scholar 

  • Gillham FEM, Bell TM, Arin T, Matthews GA, Le Rumeur C, Hearn AB (1995) Cotton production prospects in the next decade. World Bank, USA, 277

    Google Scholar 

  • Gopalakrishnan N, Manickam S, Prakash AH (2007) Problems and prospectus of cotton in different zones of India. Central Institute for Cotton Research, Regional Station, Coimbatore. –641 003 (December 15–22, 2007)

    Google Scholar 

  • Graham P (2009) Brazil. In: Cotton Outlook (2009) Cotton trading relationships with China. Cotton Outlook, Special Feature. June 2009. pp. 22–26

    Google Scholar 

  • Green JM (2018) The rise and future of glyphosate and glyphosate-resistant crops. Pest Manag Sci 74:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Grundy PR, Sequeira RV, Short KS (2004) Evaluating legume species as alternative trap crops to chickpea for management of Helicoverpa spp. (Lepidoptera: Noctuidae) in central Queensland cotton cropping systems. Bull Entomol Res 94:481–486

    Article  CAS  PubMed  Google Scholar 

  • Guest A, Mass S, Taylor I, Werth J, Thornby D, Charles G (2014) Herbicide resistance in Australian cotton farming systems. Cotton Pest Management Guide 2014–15. pp. 85–91. http://www.insidecotton.com/xmlui/bitstream/handle/1/1079/CPMG1415_08_herbicide_%20resistance_in_aus_cotton_FS.pdf?sequence=11&isAllowed=y

  • Gwathmey CO, Steckel LE, Larson JA (2008) Solid and skip-row spacings for irrigated and nonirrigated upland cotton. Agron J 100:672–680

    Article  Google Scholar 

  • Heap I, Duke SO (2018) Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci 74:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Hearn AB (1990) Prospects for rain-fed cotton. In: Proceedings of the 5th Australian Cotton Conference, 8–9 August. Australian Cotton Growers Research Association, Broadbeach, Queensland, pp 135–144

    Google Scholar 

  • Hiremath R, Yadahalli GS, Chittapur BM, Siddapur AD, YadahalliVG KBRG (2013) Integrated weed management in Bt cotton (Gossypium hirsutum L.) under UKP command area of Karnataka. Acta Biol Indica 2:400–405

    Google Scholar 

  • Hussain A, Kumar D, Dwivedi BS, Rana DS, Gangaiah B (2014) Relative response of Bt cotton (Gossypium hirsutum) to balanced fertilization in irrigated cotton-wheat cropping system. Afr J Agric Res 9:21–33

    Article  CAS  Google Scholar 

  • Hussein SMA (2005) Planting date, pattern and fertilizers levels for cotton grown in relay intercropping with wheat. Zagazig J Agric Res 32:1403–1425

    Google Scholar 

  • ICAC (2015) International Cotton Advisory Committee. Available at: http://www.ic.ac.org. Accessed 28 Nov 2015

  • Iqbal N, Manalil S, Chauhan BS, Adkins SW (2019) Glyphosate-tolerant cotton in Australia: successes and failures. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2019.1566720

    Article  CAS  Google Scholar 

  • ITC (International Trade Centre) (2011) Cotton and climate change: impacts and options to mitigate and adapt. ITC, Geneva, p 32. (Technical paper). Doc. No. MAR-11-200.E

    Google Scholar 

  • Jabran K (2016) Weed flora, yield losses and weed control in cotton crop. Julius-Kühn-Archiv 452:177–182

    Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops: 2011. International Service for the Acquisition of Agri-biotech Application (ISAAA)

    Google Scholar 

  • James C, Choudhary B (2010) Global adoption of biotech cotton, 1996 to 2007. In: Zehr UB (ed) Cotton, biotechnology in agriculture and forestry, vol 65. Springer-Verlag, Berlin Heidelberg, pp 177–196

    Google Scholar 

  • James C (2002) Global review of commercialized transgenic crops: 2001. Feature: Bt Cotton. ISAAA Briefs No. 26. ISAAA: Ithaca, NY

    Google Scholar 

  • Jost P, Shurley D, Culpepper S, Roberts P, Nichols R, Reeves J, Anthony S (2008) Economic comparison of transgenic and non-transgenic cotton production systems in Georgia. Agron J 100:42–51

    Article  Google Scholar 

  • Karademir C (2006) Cotton situation in Turkey. Presentation (.ppt) at ICAC Research Associate Programme, Washington, D.C., USA. April 2006, p. 22

    Google Scholar 

  • Katyal JC, Sharma KL, Srinivas K, Reddy MN (1997) Balanced fertilizer use in semi-arid soils. Fert News 42:59–69

    Google Scholar 

  • Khaitov B, Allanov K (2014) Crop rotation with no-till methods in cotton production of Uzbekistan. Eur J Soil Sci 3:28–32

    Google Scholar 

  • Khan B, Khaliq A (2005) Production of winter cereals as relay crops by surface seeding in cotton based cropping system. J Res (Sci) 16:79–86

    Google Scholar 

  • Khan MB, Khaliq A, Ahmad S (2004) Performance of mashbean intercropped in cotton planted in different planting patterns. J Res (Sci) 15(2):191–197

    Google Scholar 

  • Khan MI, Khan AA, Cheema HMN, Khan RSA (2018) Spatiotemporal and intra-plant expression variability of insecticidal gene (Cry1Ac) in upland cotton. Int J Agric Biol 20:715–722

    CAS  Google Scholar 

  • Khushk AM, Mernon MY, Lashari MI, Longmire J (1990) Wheat in the cotton-based cropping systems of the irrigated Sindh. PARC/CIMMYT Paper 90–4. p. 38

    Google Scholar 

  • Kruger GR, Johnson WG, Weller SC, Owen MDK, Shaw DR, Wilcut JW, Jordan DL, Wilson RG, Bernards ML, Young BG (2009) US grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol 23:162–166

    Article  CAS  Google Scholar 

  • Lamichhane JR, Devos Y, Beckie HJ, Owen MD, Tillie P, Messéan A, Kudsk P (2017) Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Crit Rev Biotechnol 37:459–475

    Article  CAS  PubMed  Google Scholar 

  • Lamlom MM, Abdel-Wahab SI, Abdel-Wahab TI, Ibrahim MAA (2018) Crop interference effects of some winter and summer field crops on Egyptian cotton characters. Adv Crop Sci Tech 6(5):394. https://doi.org/10.4172/2329-8863.1000394

    Article  Google Scholar 

  • Lee JA, Fang DD (2015) Cotton as a world crop: origin, history, and current status. In: Fang DD, Percy RG (eds) Cotton, 2nd edn. ASA-CSSA-SSSA, Madison, WI, pp 1–23

    Google Scholar 

  • Li W (2001) Agro-ecological farming systems in China: man and the biosphere. Taylor & Francis Ltd., New York

    Google Scholar 

  • Liebman M, Gallandt ER (2002) Differential responses to red clover residue and ammonium nitrate by common bean and wild mustard. Weed Sci 50:521–529

    Article  CAS  Google Scholar 

  • Lin R, Liang H, Zhang R, Tian C, Ma Y (2003) Impact of alfalfa/cotton intercropping and management on some aphid predators in China. J Appl Entomol 127:33–36

    Article  Google Scholar 

  • Luo Z, Liu H, Li W, Zhao Q, Dai J, Tian L, Dong H (2018) Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res 218:150–157

    Article  Google Scholar 

  • Ma XM, Liu XX, Zhang QW, Zhao JZ, Cai QN, Ma YA, Chen DM (2006) Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat–cotton relay intercropping system. Ento Eperiet Appl 121:235–241

    Article  Google Scholar 

  • Manalil S, Coast O, Werth J, Chauhan BS (2017) Weed management in cotton (Gossypium hirsutum L.) through weed-crop competition: A review. Crop Prot 95:53–59

    Article  Google Scholar 

  • Mannikar ND (1993) Fertilizer management in cotton. In: Tandon HLS (ed) Fertilizer management in commercial crops. Fertilizer Development and Consultation Organization (FDCO), New Delhi, pp 26–46

    Google Scholar 

  • Mao L, Zhang L, Zhang S, Evers JB, van der Werf W, WANG J, Sun H, Su Z, Huub S (2015) Resource use efficiency, ecological intensification and sustainability of intercropping systems. J Integr Agric 14:1542–1550

    Article  Google Scholar 

  • Marimuthu S, Subbian P (2013) Integrated nutrient management on weed dynamics of cotton based cropping systems in South India. SAARC J Agric 11:7–22

    Article  Google Scholar 

  • Mayee CD, Monga D, Dhillon SS, Nehra PL, Pundhir P (2008) Cotton–wheat production system in South Asia: A success story. Asia-Pacific Association of Agricultural Research Institutions, Bangkok, pp 1–48

    Google Scholar 

  • Mayee CD, Singh P, Dongre AB, Rao MRK, Raj S (2009) Transgenic Bt cotton. Central Institute of Cotton Research, Nagpur, Maharashtra

    Google Scholar 

  • Men X, Ge F, Edwards CA, Yardim EN (2004a) Influence of pesticide applications on pest and predatory arthropods associated with transgenic Bt cotton and non-transgenic cotton plants in China. Phytoparasitica 32:246–254

    Article  Google Scholar 

  • Men X, Ge F, Yardim EN, Parajulee MN (2004b) Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids in seedling cotton. BioControl 49:701–714

    Article  Google Scholar 

  • Mensah RK (1999) Habitat diversity: implications for the conservation and the use of predatory insects of Helicoverpa spp. in cotton systems in Australia. Int J Pest Manag 45:91–100

    Article  Google Scholar 

  • Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3212

    Article  CAS  PubMed  Google Scholar 

  • Milroy SP, Bange MP, Hearn AB (2004) Row configuration in rainfed cotton systems: modification of the OZCOT simulation model. Agric Syst 82:1–16

    Article  Google Scholar 

  • Mohammad MK, El-din GMS, Hosny AA (1991) Evaluating three patterns of intercropping cotton and forage cowpeas. Ann Agric Sci Moshotor 29:1269–1284

    Google Scholar 

  • Mueller J, Kirkpatrick T, Overstreet C, Koenning S, Kemerait B, Nichols B (2012) Managing nematodes in cotton-based cropping systems. https://www.cottoninc.com/wpcontent/.../2015/12/2012-Managing-Nematodes.pdf

  • Mullins GL, Burmester CH (2010) Relation of growth and development to mineral nutrition. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiological of cotton. Springer Publishing Co., New York, pp 97–105

    Chapter  Google Scholar 

  • Naik VC, Kumbhare S, Kranthi S, Satija U, Kranthi KR (2018) Field evolved-resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) to transgenic Bt-cotton expressing Cry1Ac and Cry2Ab in India. Pest Manag Sci 74:2544–2554

    Article  CAS  PubMed  Google Scholar 

  • Northup BK, Rao SC (2015) Green manures in continuous wheat systems affect grain yield and nitrogen content. Agron J 107:1666–1672

    Article  CAS  Google Scholar 

  • Paradelo R, van Oort F, Chenu C (2013) Water-dispersible clay in bare fallow soils after 80 years of continuous fertilizer addition. Geoderma 200-201:40–44

    Article  CAS  Google Scholar 

  • Parajulee MN, Montandon R, Slosser JE (1997) Relay intercropping to enhance abundance of insect predators of cotton aphid (Aphis gossypii Glover) in Texas cotton. Int J Pest Manag 43:227–232

    Article  Google Scholar 

  • Pernes-Debuyser A, Tessier D (2004) Soil physical properties affected by long-term fertilization. Eur J Soil Sci 55:505–512

    Article  CAS  Google Scholar 

  • Potdar MV, Anders M, Sharma MM (1996) Yield advantages and economic returns from pigeon pea/cotton strip intercropping rotations on a vertisol in the Indian semi-arid tropics. In: Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, JVDKK R, Rego TJ (eds) Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics. Japan International Research Center for Agricultural Sciences, Tsukuba, pp 59–72

    Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China: The benefits continue. Plant J 31:423–430

    Article  CAS  PubMed  Google Scholar 

  • Pray C, Ma D, Huang J, Qiao F (2001) Impact of Bt cotton in China. World Dev 29:813–825

    Article  Google Scholar 

  • Pyke B, Rice R, Sabine B, Zalucki MP (1987) The push–pull strategy–behavioural control of Heliothis. Aust. Cotton Grow. May–July, 7–9

    Google Scholar 

  • Qaim M (2003) Bt cotton in India: Field trial results and economic projections. World Dev 31:2115–2127

    Article  Google Scholar 

  • Rafique E, Mahmood-ul-Hassan M, Rashid A, Chaudhary MF (2012) Nutrient balances as affected by integrated nutrient and crop residue management in cotton-wheat system in aridisols. I. Nitrogen. J Plant Nutr 35:591–616

    Article  CAS  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94–113

    Article  Google Scholar 

  • Rajput MT, Tahir SS, Ahmed B, Arain MA (2008) Check list of the weeds found in cotton crops, cultivated in Taluka Ubauro, district Sukkur, Pakistan. Pak J Bot 40:65–70

    Google Scholar 

  • Ramalho FS, Fernandes FS, Nascimento AR, Nascimento Junior JL, Malaquias JB, Silva CA (2012) Assessment of fennel aphids (Hemiptera: Aphididae) and their predators in fennel intercropped with cotton with colored fibers. J Econ Entomol 105:113–119

    Article  CAS  PubMed  Google Scholar 

  • Ramprakash, Prasad M (2000) Effect of nitrogen, chlormequat chloride and farmyard manure applied to cotton (Gossypium hirsutum) and their residual effect on succeeding wheat (Triticum aestivum) crop. Indian J Agron 45:263–268

    Google Scholar 

  • Rao VP (1991) A study on intercropping of cotton with grain legumes under rainfed conditions. J Res APAU 19:73–74

    Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Article  Google Scholar 

  • Reddy MS, Natarajan M, Rao MR, Willy RW, Ong CK (1985) Cropping system for rainfed situations with particular reference to ICRISAT an experience. Paper presented in: national symposium on cropping system at Karnal, p. 13

    Google Scholar 

  • Rocheser IJ, Peoples M (2005) Growing vetches in irrigated cotton systems inputs of fixed N, N fertilizer savings, and cotton productivity. Plant Soil 271:251–264

    Article  CAS  Google Scholar 

  • Rochester IJ, Peoples MB, Hullugalle NR, Gault RR, Constable GA (2001) Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems. Field Crops Res 70:27–41

    Article  Google Scholar 

  • Saeed M, Shahid MRM, Jabar A, Ullah E, Khan MB (1999) Agroeconomic assessment of different cotton-based inter-relay cropping systems in two geometrical patterns. Int J Agric Biol 4:234–237

    Google Scholar 

  • Sajjad A, Anjum SA, Ahmad R, Waraich EA (2018) Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan. Environ Sci Pollut Res 25:782–789

    Article  CAS  Google Scholar 

  • Salma S, Rehman S, Shah MA (2012) Rainfall trends in different climate zones of Pakistan. Pak J Meterol 9:37–47

    Google Scholar 

  • Sarkar RK, Chakraborty A, Mazumdar RC (1995) Effect of intercropping of oilseed and pulse crops in upland cotton for productivity and monetary advantage in the system. Indian J Agric Sci 65:246–249

    Google Scholar 

  • Schader C, Zaller JG, Köpke U (2005) Cotton-Basil intercropping: Effects on pests, yields and economical parameters in an organic field in Fayoum, Egypt. Biol Agric Hort 23:59–72

    Article  Google Scholar 

  • Sekloka E, Sabi AK, Zinsou VA, Aboudou A, Ndogbe CK, Afouda L, Baba-Moussa L (2018) Phenological, morphological and agronomic characterization of sixteen genotypes of cotton plant (Gossypium hirsutum L.) in rainfed condition in Benin. J Plant Breeding Crop Sci 10:33–40

    Article  Google Scholar 

  • Shah MA, Farooq M, Hussain M (2016) Productivity and profitability of cotton–wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. Eur J Agron 75:33–41

    Article  Google Scholar 

  • Shah MA, Farooq M, Hussain M (2017) Evaluation of transplanting Bt cotton in a cotton–wheat cropping system. Exp Agric 53:227–241

    Article  Google Scholar 

  • Shantharam S, Sullia SB, Shivakumara GS (2008) Peer review contestations in the era of transgenic crops. Curr Sci 95:167–168

    Google Scholar 

  • Showler AT, Greenberg SM (2003) Effects of weeds on selected arthropod herbivore and natural enemy populations, and on cotton growth and yield. Environ Entomol 32:39–50

    Article  Google Scholar 

  • Singh J, Babar S, Abraham S, Venugopalan MV, Majumdar G (2012) Fertilization of high density, rainfed cotton grown on vertisols of India. Better Crops 96:26–28

    Google Scholar 

  • Singh M, Sidhu HS, Mahal JS, Manes GS, Jat ML, Mahal AK, Singh P, Singh Y (2016) Relay sowing of wheat in the cotton–wheat cropping system in North-West India: technical and economic aspects. Exp Agric 53:539–552

    Article  Google Scholar 

  • Singh RJ, Ahlawat IPS (2014) Effects of transgenic cotton-based cropping systems and their fertility levels on succeeding wheat crop. Commun Soil Sci Plant Anal 45:2385–2396

    Article  CAS  Google Scholar 

  • Singh RJ, Ahlawat IPS, Singh S (2013) Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical Inceptisol. Environ Monit Assess 185:485–495

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Ahlawat IPS, Gangaiah B (2009) Direct and residual effects of nitrogen requirement in Bt cotton–wheat cropping system. Indian J Agron 54:401–408

    CAS  Google Scholar 

  • Sivakumar SD (2004) Performance of vegetable intercropping systems and sources of nutrients supply on sustainable yield of rainfed cotton. Ph.D. Dissertation, Agricultural College and Research Institute, Madurai. Tamil Nadu Agric. Univ., Coimbatore, India

    Google Scholar 

  • Sosnoskie LM, Culpepper AS (2014) Glyphosate-resistant palmer amaranth (Amaranthus palmeri) increases herbicide use, tillage, and hand-weeding in Georgia cotton. Weed Sci 62:393–402

    Article  CAS  Google Scholar 

  • Stephenson DO, Brecke BJ (2010) Weed management in single- vs. twin-row cotton (Gossypium hirsutum). Weed Technol 24:275–280

    Article  CAS  Google Scholar 

  • Sui N, Zhou Z, Yu C, Liu R, Yang C, Zhang F, Song G, Meng Y (2015) Yield and potassium use efficiency of cotton with wheat straw incorporation and potassium fertilization on soils with various conditions in the wheat-cotton rotation system. Field Crops Res 172:132–144

    Article  Google Scholar 

  • Sultan MS, El-Kassaby AT, Ghonema MH, Ageez AA, Abd-Allah AMM (2012a) Relay intercropping wheat and cotton studies: i- effect of times of two last irrigations and ridge width on growth and yield of wheat. J Plant Prod Mansoura Univ 3:679–689

    Article  Google Scholar 

  • Sultan MS, El-Kassaby AT, Ghonema MH, Ogeaz AA, Abd-Allah AMM (2012b) Relay intercropping wheat and cotton studies: II-Effect of sowing date and ridge width on cotton. J Biol Sci 12:349–354

    Article  Google Scholar 

  • Suriyagoda L, De Costa WAJM, Lambers H (2014) Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant Soil 384:53–68

    Article  CAS  Google Scholar 

  • Tabashnik BE, Bre’vault T, Carrie’re Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Carriere Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Uenosono S, Ono S (2003) Short- and long-term effects of rice straw application on nitrogen uptake by crops and nitrogen mineralization under flooded and upland conditions. Plant Soil 251:291–301

    Article  CAS  Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crops Res 229:37–43

    Article  Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tillman PG, Mullinix BG Jr (2004) Grain sorghum as a trap crop for corn earworm (Lepidoptera: Noctuidae) in cotton. Environ Entomol 33:1371–1380

    Article  Google Scholar 

  • Torres JB, Ruberson JR, Whitehouse M (2009) Transgenic cotton for sustainable pest management: a review. In: Lichtfouse E (ed) Sustainable agriculture reviews: organic farming, pest control and remediation of soil pollutants, 1st edn. Springer, New York, pp 45–82

    Google Scholar 

  • Turkhede AB, Nagdeve MB, Karunakar AP, Gabhane VV, Mohod VD, Mali RS (2017) Diversification in cotton based cropping system under mechanization in rainfed condition of vidarbha of Maharashtra, India. Int J Curr Microbiol App Sci 6:2189–2206

    Article  Google Scholar 

  • Udeigwe TK, Teboh JM, Eze PN, Stietiya MH, Kumar V, Hendrix J, Mascagni HJ Jr, Ying T, Kandakji T (2015) Implications of leading crop production practices on environmental quality and human health. J Environ Manag 151:267–279

    Article  CAS  Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3&4):386–391

    Google Scholar 

  • Vaiyapuri K, Amanullah MM, Rajendran K, Sathyamoorthi K (2010) Intercropping unconventional green manures in cotton: An organic approach for multiple benefits – A review. Asian J Plant Sci 9:223–226

    Article  Google Scholar 

  • Venugopalan MV, Pundarikakshudu R (1999) Long-term effect of nutrient management and cropping system on cotton yield and soil fertility in rainfed vertisols. Nutr Cycl Agroecosyst 55:159–164

    Article  Google Scholar 

  • Vitale J, Glick H, Greenplate JT, Abdeennadher M, Traoré O (2008) Second-generation Bt cotton field trials in Burkina Faso: Analyzing the potential benefits to West African farmers. Crop Sci 48:1958–1966

    Article  Google Scholar 

  • Wang Q, Han S, Zhang L, Zhang D, van der Werf W, Evers JB, Sun H, Su Z, Zhang S (2016) Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry. Eur J Agron 79:58–65

    Article  Google Scholar 

  • Wang XB, Cai DX, Hoogmoed WB, Perdok UD, Oenema O (2007) Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies. Nutr Cycl Agroecosyst 79:1–16

    Article  Google Scholar 

  • Wang ZJ, Lin H, Huang JK, Hu RF, Rozelle S, Pray C (2009) Bt Cotton in China: are secondary insect infestations offsetting the benefits in farmer fields? Agric Sci China 8:83–90

    Article  Google Scholar 

  • Werth J, Boucher L, Thornby D, Walker S, Charles G (2013) Changes in weed species since the introduction of glyphosate-resistant cotton. Crop Pasture Sci 64:791–798

    Article  CAS  Google Scholar 

  • Werth J, Thornby D, Walker S (2012) Assessing weeds at risk of evolving glyphosate resistance in Australian sub-tropical glyphosate-resistant cotton systems. Crop Pasture Sci 62:1002–1009

    Article  CAS  Google Scholar 

  • Williams EJ, Rochester I, Constable G (2011) Maximizing the profitability of cotton cropping systems with legumes. Available at: http://www.insidecotton.com/jspui/bitstream/1/418/1/5100601_Emma_Williams.pdf

  • Xu N, Fok M, Bai L, Zhou Z (2008) Effectiveness and chemical pest control of Bt-cotton in the Yangtze River, Valley, China. Crop Prot 27:1269–1276

    Article  Google Scholar 

  • Yang HQ, Cui WG (2010) Cotton industry in China, status and development strategies. Crops 5:13–17. (in Chinese)

    Google Scholar 

  • Yu C, Wang X, Hu B, Yang C, Sui N, Liu R, Meng Y, Zhou Z (2016) Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Field Crops Res 197:39–51

    Article  Google Scholar 

  • Zaman M, Mirza MS, Irem S, Zafar Y, Mehmoob-ur-Rehman (2015) A temporal expression of Cry1Ac protein in cotton plant and its impact on soil health. Int J Agric Biol 17:280–288

    CAS  Google Scholar 

  • Zeng XY, Ma YT, Ma LR (2007) Utilization of straw in biomass energy in China. Renew Sust Energ Rev 11:976–987

    Article  CAS  Google Scholar 

  • Zhang L (2007) Productivity and resource use in cotton and wheat relay intercropping. Ph.D. thesis Wageningen University. ISBN: 978-90-8504-759-9

    Google Scholar 

  • Zhang L, Li Y (1997) The technical approach on wheat-cotton double cropping system sustainable development in Huanghuaihai Plain. Proceedings of International Symposium of Sustainable Agricultural Technologies (ISSAT’97), Beijing

    Google Scholar 

  • Zhang L, Spiertz JHJ, Zhang S, Li B, van der Werf W (2008c) Nitrogen economy and use efficiency in cotton and wheat relay intercropping system. Plant Soil 303:55–68

    Article  CAS  Google Scholar 

  • Zhang L, van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz JHJ (2008b) Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res 107:29–42

    Article  Google Scholar 

  • Zhang L, van der Werf W, Zhang S, Li B, Spiertz JHJ (2008a) Temperature-mediated developmental delay may limit yield of cotton in relay intercrops with wheat. Field Crops Res 106:258–268

    Article  Google Scholar 

  • Zhang L, van der Werf W, Zhang S, Li B, Spiertz JHJ (2007) Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Res 103:178–188

    Article  Google Scholar 

  • Zhang R, Ren L, Wang C, Lin R, Tian C (2004) Cotton aphid predators on alfalfa and their impact on cotton aphid abundance. Appl Entomol Zool 39:235–241

    Article  Google Scholar 

  • Zhang ZP (2003) Development of chemical weed control and integrated weed management in China. Weed Biol Manag 3:197–203

    Article  CAS  Google Scholar 

  • Zhao JH, Ho P, Azadi H (2011) Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ Monit Assess 173:985–994

    Article  PubMed  Google Scholar 

  • Zohry AA (2005) Effect of relaying cotton on some crops under bio-mineral N fertilization rates on yield and yield components. Ann Agric Sci 431:89–103

    Google Scholar 

  • Zohry AE, Ouda S (2015) Management of crops intensification in Egypt to overcome water scarcity. Global J Adv Res 2:1824–1831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Matloob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matloob, A. et al. (2020). Cotton-Based Cropping Systems and Their Impacts on Production. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_15

Download citation

Publish with us

Policies and ethics