Skip to main content

Ecological Management of Cotton Insect Pests

  • Chapter
  • First Online:
Book cover Cotton Production and Uses

Abstract

Ecological pest management (EPM) shares many fundamentals of integrated pest management (IPM) considering the stability of natural ecosystems as the most important goal along with good yielding crop cultivation. Cotton is grown in less than 10% of cultivable area but it is the only crop which share more than 45% usage of insecticides. Considering the harmful impacts of pesticides on agroecosystem, stability of natural environment and higher biodiversity in cotton zones is suggested through adopting whole system management approaches. In this approach, combination of many crops, lands, natural vegetation, and cultural practices can suppress the pest populations in cotton areas. Weed management through biocontrol agents is also supported in this system which increases food for predators and parasitoid development ultimately helping to suppress cotton pests. The IPM tactics like classical biological control, clean cropping, crop rotation, etc., can also be easily adopted in ecological based pest management. Soil and natural resources conservation-based biological control will be the vital component of EPM replacing the IPM in the future. It is a fundamental shift to total system approach with “built-in” preventive control measures addressing the increased demand for organic agriculture. Sustainable organic agriculture is interlinked with precise knowledge of multitrophic nutritional levels and their efficient management for pest management strategies. The pesticide or other chemical option will be used at last by adopting precision agriculture equipment, e.g., specific site application through sensor-based applicators (drone sprayer mounted with GPS and WSN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bt :

Bacillus thuringiensis

CIE:

Copper inducible elicitor

DDT:

Dichlorodiphenyltrichloroethane

EFN:

Extrafloral nectar

EPM:

Ecological pest management

ETL:

Economic threshold level

GM:

Genetically modified

GMOs:

Genetically modified organisms

GPS:

Global positioning system

HPR:

Host-plant resistance

INM:

Integrated nutrient management

IPM:

Integrated pest management

IWM:

Integrated weed management

PA:

Precision agriculture

VRT:

Variable rate technology

WSN:

Wireless sensor network

References

  • Abrol DP, Shankar U (2012) History, overview and principles of ecologically-based pest management. In: Abrol DP, Shankar U (eds) Integrated pest management: principles and practice. CAB International, Cambridge, MA, pp 1–26

    Chapter  Google Scholar 

  • Adamczyk JJ Jr, Adams LC, Hardee DD (2001) Field efficacy and seasonal expression profiles for terminal leaves or single and double Bacillus thuringiensis toxin cotton genotypes. J Econ Entomol 94:1589–1593

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk JJ, Gore J (2004) Laboratory and field performance of cotton containing Cry1ac, Cry1f, and both Cry1ac and Cry1f (Widestrike™) against beet armyworm and fall armyworm larvae (Lepidoptera: Noctuidae). Fla Entomol 87:427–432

    Article  CAS  Google Scholar 

  • AFD (2006) Le semis direct sur couverture végétalepermanente (SCV). AFD, Paris, p 68

    Google Scholar 

  • Altieri MA (1994) Biodiversity and pest management in agroecosystems. Food Products Press, New York

    Google Scholar 

  • Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1(4):405–430

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2004) Biodiversity and pest management in agroecosystems. Food Product Press, New York

    Book  Google Scholar 

  • Azfar S, Nadeem A, Shaikh AB (2015) Pest detection and control techniques using wireless sensor network: a review. J Entomol Zool Stud 3(2):92–99

    Google Scholar 

  • Benedict JH, Ring DR (2004) Transgenic crops expressing Bt proteins: current status, challenges and outlook. In: Koul O, Dhaliwal GS (eds) Transgenic crop protection: concepts and strategies. Science Publishers, Enfield, NH, pp 15–84

    Google Scholar 

  • Benson GO (1985) Why the reduced yields when corn follows corn and possible management responses. Proc 40th Corn Sorghum Res Conf. pp 161–174

    Google Scholar 

  • Blumberg AY, Crossley DA Jr (1983) Comparison of soil surface arthropod populations in conventional tillage, no-tillage and old field systems. Agro-Ecosystems 8:247–253

    Article  Google Scholar 

  • Brookes G, Barfoot P (2006) Global impact of biotech crops: socio-economic and environmental effects in the first ten years of commercial use. Ag Bio Forum 9:139–151

    Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, WCJr B (2003) Field and laboratory evaluations of transgenic cottons expressing two proteins compared with one of Bacillus thuringiensis var. kurstaki Berliner for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    Article  CAS  PubMed  Google Scholar 

  • Conway G (1997) The doubly green revolution: food for all in the twenty-first century. Penguin, London, UK

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) Theuse of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • De-Sousa HFA (2007) Effect of strip intercropping of cotton and maize on pest’s incidence and yield in Morrumbala District, Mozambique. In: 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October, 2007. African Crop Science Society. pp. 1053–1055

    Google Scholar 

  • Dhaliwal GS, Arora R (2001) Integrated pest management: concepts and approaches. Kalyani Publishers, New Delhi

    Google Scholar 

  • Dhaliwal BK, Walia US, Brar LS (1998) Response of Phalaris minor Retz. Biotypes to various herbicides. Indian J Weed Sci 30:116–120

    Google Scholar 

  • Dicke M, Sabelis MW (1987) How plants obtain predatory mites as bodyguards. Netherlands J Zool 38(2):148–165

    Article  Google Scholar 

  • Dippenaar-Schoeman AS, van den Berg AM, van den Berg A (1999) Spiders in south African cotton fields: species diversity and abundance (Arachnida: Araneae). Afr Plant Prot 5:93–103

    Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15(1):3–11

    Article  Google Scholar 

  • Duraimurugan P, Regupathy A (2005) Push-pull strategy with trap crops, neem and nuclear polyhedrosis virus for insecticide resistance management in Helicoverpa armigera (Hubner) in cotton. Am J Appl Sci 2:1042–1048

    Article  Google Scholar 

  • FAO (2001) World review of the state of food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fawcett R, Towery D (2002) Conservation tillage and plant biotechnology. How new technologies can improve the environment by reducing the need to plow, CTIC, Purdue University, pp. 20

    Google Scholar 

  • Fitt GP, Wilson LJ (2000) Genetic engineering in IPM: Bt cotton. In: Kennedy GG, Sutton TB (eds) Emerging technologies for integrated pest management: concepts, research and implementation, proceedings of a conference, Raleigh, NC, USA, 8–10 March, 1999, pp. 108–125

    Google Scholar 

  • Forbes AA, Rosenheim JA (2011) Plant responses to insect herbivore damage are modulated by phosphorus nutrition. Entomol Exp Appl 139:242–249

    Article  Google Scholar 

  • Furlan L, Kreutzweiser D (2015) Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environ Sci Pollut Res 22:135–147

    Article  CAS  Google Scholar 

  • Georghiou GP (1990) Overview of insecticide resistance. In: Green MB, LeBaron HM, Moberg WK (eds) Managing resistance to agrochemicals. American Chemical Society, Washington, DC, pp 18–41

    Chapter  Google Scholar 

  • Hargreaves H (1948) List of the recorded cotton insects of the world. Commonwealth Institute of Entomology, London, UK, p 50

    Google Scholar 

  • Hinrichsen D, Robey B (2000) Population and the environment: the global challenge. Population Reports, Series M, No. 5. Johns Hopkins University School of Public Health, Baltimore, MD

    Google Scholar 

  • Hodson A, Lewis EE (2016) Managing for soil health can suppress pests. Calif Agr 70(3):137–141

    Article  Google Scholar 

  • Karlen DL, Varvel GE, Bullock D, Cruse RM (1994) Crop rotations for the 21st century. Adv Agron 53:1–45

    Article  Google Scholar 

  • Kaushik L, Mishra A (2013) Role of precision farming in sustainable development of hill agriculture. In: ISAE 2013. Proceedings of the international symposium on agriculture and environment 2013, 28 November 2013. University of Ruhuna, Sri Lanka, pp 83–86

    Google Scholar 

  • King EG, Coleman RJ, Morales-Ramos JA, Summy KR, Bell MR, Snodgras GL (1996) Biological control. In: King EG, Phillips JR, Coleman RJ (eds) Cotton insects and mites: characterization and management. The Cotton Foundation Publisher, Memphis, TN, pp 511–538

    Google Scholar 

  • Lewis WJ, Takasu K (1990) Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature 348:635–636

    Article  Google Scholar 

  • Lewis WJ, van Lenteren JC, Phatak SC, Tumlinson JH (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci 94(23):12243–12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  • Lin R, Liang H, Zhang R, Tian C, Ma Y (2003) Impact of alfalfa/cotton intercropping and management on some aphid predators in China. J Appl Entomol 127:33–36

    Article  Google Scholar 

  • Lopez O, Rach MM, Migallon H, Malaumbres MP, Bonastre A, Serrano JJ (2012) Monitoring pest insect traps by means of low-power image sensor technologies. Sensors 12(11):15801–15819

    Article  PubMed  PubMed Central  Google Scholar 

  • Magdoff F, Van EH (2000) Building soils for better crops. Sustainable Agriculture Network, Beltsville, pp 80–82

    Google Scholar 

  • Mason A (1928) Spraying, dusting and fumigating of plants. New York. In: Macmillan CD, Shrestha A (eds) (2004) new dimensions in Agroecology. The Haworth Press, Binghampton, NY

    Google Scholar 

  • McCutcheon GS (2000) Beneficial arthropods in conservation tillage cotton – a three year study. In: Dugger CP, Richter DA (eds) Proceedings of 2000 Beltwide Cotton Conference, San Antonio, National Cotton Council, Memphis, pp. 1302–1306

    Google Scholar 

  • Meisner MH, Rosenheim JA (2014) Ecoinformatics reveals effects of crop rotational histories on cotton yield. PLoS One 9(1):e85710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metcalf RL (1980) Changing role of insecticides in crop protection. Annu Rev Entomol l25:219–256

    Article  Google Scholar 

  • Morales H (2002) Pest management in traditional tropical agroecosystems: lessons for pest prevention research and extension. Integrated Pest Manag Rev 7(3):145–163

    Article  Google Scholar 

  • Naranjo SE (2001) Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Prot 20:835–852

    Article  Google Scholar 

  • Naranjo SE, Luttrell RG (2008) Cotton arthropod IPM. In: Radcliff EB, Hutchison WD (eds) Integrated pest management. Cambridge University Press, Cambridge

    Google Scholar 

  • Naranjo SE, Ruberson JR, Sharma HC, Wilson L, Wu K (2008) The present and future role of insect-resistant genetically modified cotton in IPM. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 159–194

    Chapter  Google Scholar 

  • Nwilene FE, Nwanze KF, Youdeowei A (2008) Impact of integrated pest management on food and horticultural crops in Africa. Entomol Exp Appl 128:355–363

    Article  Google Scholar 

  • Ohlander L, Lagerberg C, Gertsson U (1999) Visions for ecologically sound agricultural systems. J Sustain Agr 14(1):73–79

    Article  Google Scholar 

  • Pedigo LP, Rice ME (2014) Managing insects by resistance plants. In: Entomology and pest management. Waveland Press, Illionis, USA, pp 441–474

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Peter-Duelli MKO, Duelli P, Obrist MK, Schmatz DR (1999) Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric Ecosyst Environ 74:33–64

    Article  Google Scholar 

  • Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55(7):573–582

    Article  Google Scholar 

  • Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy—behavioural control of Heliothis. Aust Cotton Grow May–July: 7–9

    Google Scholar 

  • Ranjitha G, Srinivasan MR, Rajesh A (2014) Detection and estimation of damage caused by thrips Thrips tabaci (Lind) of cotton using hyperspectral radiometer. Agrotechnology 3(1):123

    Google Scholar 

  • Ratnadass A, Michellon R, Randriamanantsoa R, Seguy L (2006) Effects of soil and plant management on crop pests and diseases. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 589–602

    Chapter  Google Scholar 

  • Rose USR, Lewis J, Tumlinson JH (2006) Extra floral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Funct Ecol 20(1):67–74

    Article  Google Scholar 

  • Rothamsted Research Center (2006) Guide to the classical and other long-term experiments, datasets and sample archive. Technical report, Rothamsted Research Center, pp. 1–60

    Google Scholar 

  • Russelle MP, Hesterman OB, Shaeffer CC, Heichel GH (1987) Estimating nitrogen and rotation effects in legume-corn rotations. In: Power JF (ed) The role of legumes in conservation tillage systems. Soil Conserv Soc Am, Ankeny, IA, pp. 41–42

    Google Scholar 

  • Seguy L, Bouzinac S, Belot JL, Martin J (2004) Sustainable cotton production systems for the humid savannas of Central Brazil. In: Swanepoel A (ed) Proceedings world cotton Conf.–3, cotton production for the new millennium. Cape Town, 2003. ARC, Institute for Industrial Crops, Pretoria, pp 481–496

    Google Scholar 

  • Sharma HC, Arora R, Pampapathy G (2007) Influence of transgenic cottons with Bacillus thuringiensis cry1Ac gene on the natural enemies of Helicoverpa armigera. BioControl 52:469–489

    Article  Google Scholar 

  • Shelton AM, Badenez-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308

    Article  CAS  PubMed  Google Scholar 

  • Sithanantham S, Singh SP, Romeis J (2005) Biological control of Helicoverpa: research status, constraints and opportunities. In: Sharma HC (ed) Heliothis/Helicoverpa management: emerging trends and strategies for future research. Oxford/IBH, New Delhi, India, pp 329–369

    Google Scholar 

  • Smith K (2011) We are seven billion. Nat Clim Chang 1:331–335

    Article  Google Scholar 

  • Smith RF, Reynolds HT (1972) Effects of manipulation of cotton agro-ecosystems on insect populations. In: Farvar MT, Milton JP (eds) The careless technology: ecology and international development. The Natural History Press, Garden City, NY, pp 373–406

    Google Scholar 

  • Stapel JO, Cortesero AM, De Moraes CM, Tumlinson JH, Lewis WJ (1997) Extra floral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (hymenoptera: Braconidae) in cotton. Environ Entomol 26(3):617–623

    Article  Google Scholar 

  • Stinner BR, House GJ (1990) Arthropods and other invertebrates in conservation-tillage agriculture. Annu Rev Entomol 35:299–318

    Article  Google Scholar 

  • Thomas MB (1999) Ecological approaches and the development of ‘truly integrated’ pest management. Proc Natl Acad Sci U S A 96:5944–5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ti X, Zhang Q (2009) Advances in research of induced resistance to insects in cotton. Front Biol China 4(3):289–297

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tumlinson J, Lewis WJ, Vet LEM (1993) How parasitic wasps find their hosts. Sci Am 268(3):100–106

    Article  CAS  Google Scholar 

  • Turlings TC, Loughrin JH, McCall PJ, Röse US, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92(10):4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei-Di L, Wu KM, Chen XX (2003) Effects of transgenic cottons carrying Cry1A+ CpTI and Cry1A genes on the structures and composition of pest and beneficial arthropod communities in cotton field in North China. J Agr Biotechnol 11(5):494–499

    Google Scholar 

  • Wilson LJ, Mensah RK, Fitt GP (2004) Implementing integrated pest management in Australian cotton. In: Horowitz AR, Ishaaya I (eds) Insect pest management. Springer, Berlin, pp 97–118

    Chapter  Google Scholar 

  • Wu K, Guo Y (2003) Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii glover, in northern China. Environ Entomol 32:312–318

    Article  Google Scholar 

  • Yin R, He Q (1997) The spatial and temporal effects of paulownia intercropping: the case of northern China. Agrofor Syst 37:91–109

    Article  Google Scholar 

  • Yokoyama VY (1978) Relation of seasonal changes in extra floral nectar and foliar protein and arthropod populations in cotton. Environ Entomol 7(6):799–802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M., Muhammad, W., Sajjad, A. (2020). Ecological Management of Cotton Insect Pests. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_12

Download citation

Publish with us

Policies and ethics