Skip to main content

Balance Rule in Artificial Intelligence

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1072))

Included in the following conference series:

  • 626 Accesses

Abstract

Deep learning embodied some essence of artificial intelligence, but it relied on data set and lacked migration learning ability. We should build general theorem to explain artificial intelligence from nature or human. We can treat each static data as a variable like wave-particle duality, then we can adopt idea from convolutional neural network or other machine learning algorithms to extract features from little data. This method can open up a new theory to accomplish migration learning and artificial intelligence. The theory will be supported by balance rule: everything has a gradient and tends to remain a zero gradient state, and we can connect different feature spaces by gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer Programs. MIT Press, Cambridge (1985)

    MATH  Google Scholar 

  2. Baumgartner, R., Gottlob, G., Flesca, S.: Visual information extraction with Lixto. In: Proceedings of the 27th International Conference on Very Large Databases, pp. 119–128. Morgan Kaufmann, Rome (2001)

    Google Scholar 

  3. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cogn. Sci. 9(2), 171–216 (1985)

    Article  Google Scholar 

  4. Hock, M., Bless, R., Zitterbart, M.: IEEE International Conference on Network Protocols, pp. 1–10 (2017)

    Google Scholar 

  5. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pineda, F.J.: Generalization of back-propagation to recurrent neural networks. Phys. Rev. Lett. 59(19), 2229 (1987)

    Article  MathSciNet  Google Scholar 

  7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  8. Broomhead, D.S., Lowe, D.: Multivariate functional interpolation and adaptive network Complex system (1988)

    Google Scholar 

  9. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 37(1), 54–115 (1987)

    Article  MATH  Google Scholar 

  10. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Advances in Neural Information Processing Systems, pp. 524–532 (1999)

    Google Scholar 

  12. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  13. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Comput. Vis. 9(1), 147–169 (1985)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  18. Abadi, P., et al.: TensorFlow: a system for large-scale machine learning, pp. 265–283 (2016)

    Google Scholar 

  19. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  21. LeCun, Y., Bengio, Y., et al.: Caffe: convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  22. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  24. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1994)

    Article  MATH  Google Scholar 

  25. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  26. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  27. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29(2), 103–130 (1997)

    Article  MATH  Google Scholar 

  28. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  29. Jain, A.K.: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  30. Valiant, L.G.: A theory of the learnable. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 436–445 (1984)

    Google Scholar 

  31. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwei Li , Guangsheng Luo , Fei Dai or Rong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Luo, G., Dai, F., Li, R. (2019). Balance Rule in Artificial Intelligence. In: Zeng, A., Pan, D., Hao, T., Zhang, D., Shi, Y., Song, X. (eds) Human Brain and Artificial Intelligence. HBAI 2019. Communications in Computer and Information Science, vol 1072. Springer, Singapore. https://doi.org/10.1007/978-981-15-1398-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1398-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1397-8

  • Online ISBN: 978-981-15-1398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics