Skip to main content

Sustainable Management of Toxic Industrial Effluent of Coal-Based Power Plants

  • Chapter
  • First Online:
Book cover Emerging Eco-friendly Green Technologies for Wastewater Treatment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

  • 878 Accesses

Abstract

Millions of tons of coke are produced to meet the demand of manufacturing of iron and steel industry and coal-based power plants with rapid urbanization. The conversion of coal to coke is one of the major sources of environmental pollution, because this process generates huge volume of coke-oven wastewater (COWW) during quenching of hot coke. The discharged wastewater contains cyanide, thiocyanide, ammonium-N, phenols with high biological oxygen demand, chemical oxygen demand, total dissolved solids, total suspended solid, and polyaromatic compounds pose a threat to the existing flora and fauna of the ecosystem. In this chapter, detailed information is provided about the generation, characteristics, toxicity and harmful effect on environment of COWW. In addition, different sustainable technologies such as biological, physical, and integrated processes have been proposed for the sustainable treatment of COWW while comparing their merits and demerits with those of the existing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Public Health Association (APHA) (2012) Standard methods for the examination of water and wastewater, 22nd edn. APHA, Washington, DC

    Google Scholar 

  • Banerjee P, De S (2010) Coupled concentration polarization and pore flow modeling of nanofiltration of an industrial textile effluent. Sep Purif Technol 73(3):355–362

    Article  CAS  Google Scholar 

  • Barakat MA, Chen YT, Huang CP (2004) Removal of toxic cyanide and Cu(II) ions from water by illuminated TiO2 catalyst. Appl Catal B 53:13–20

    Article  CAS  Google Scholar 

  • Barriga-Ordonez F, Nava-Alonso F, Uribe-Salas A (2006) Cyanide oxidation by ozone in a steady-state flow bubble column. Miner Eng 19:117–122

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2008a) Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grow in post methanated distillery effluent (PMDE) irrigated soil. Bioresour Technol 99(17):8316–8324

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Singh SK (2008b) Characterization of phenolic metabolites from post methanated distillery effluent (PMDE) after degradation with bacterial consortium Ind. J Environ Prot 28(11):1019–1027

    CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2009) Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery wastewater. World J Microbiol Biotechnol 25:737–744

    Article  CAS  Google Scholar 

  • Bharagava RN, Yadav S, Chandra R (2014) Antibiotic and heavy metal resistance properties of bacteria isolated from the aeration lagoons of common effluent treatment plant (CETP) of tannery industries (Unnao, India). Indian J Biotechnol 13:514–519

    CAS  Google Scholar 

  • Burmistrz P, Burmistrz M (2013) Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater. Water Sci Technol 68(11):2414–2420

    Article  CAS  Google Scholar 

  • Chakraborty S, Veeramani H (2006) Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic–anoxic– aerobic continuous system. Process Biochem 41:96–105

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Rai V (2008) Melanoidins as major colorant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99:4648–4660

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  Google Scholar 

  • Chang EE, Hsing HJ, Chiang CP et al (2008) The chemical and biological characteristics of coke-oven wastewater by ozonation. J Hazard Mater 156:560–567

    Article  CAS  Google Scholar 

  • Chu L, Wang J, Dong J et al (2012) Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere 86(4):409–414

    Article  CAS  Google Scholar 

  • Dash RR, Balomajumder C, Kumar A (2008) Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB). J Hazard Mater 152:387–396

    Article  CAS  Google Scholar 

  • Dong Y, Zhang J (2010) Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays. Ecotoxicol Environ Safe 73(5):944–948

    Article  CAS  Google Scholar 

  • El Diwani G, El Rafie S, El Ibiari NN et al (2007) Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination 214:200–214

    Article  CAS  Google Scholar 

  • Escher BI, Charlotte VD, Mriga D et al (2013) Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values. Environ Sci Technol 47(13):7002–7011

    Article  CAS  Google Scholar 

  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC et al (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170(2–3):530–551

    Article  CAS  Google Scholar 

  • Ghose MK, Kumar A (1993) Impact on surface water quality due to the discharge of coal washery effluents and dispersion profile of pollutant in Damodar river. Asian Environ 15(1):32–40

    CAS  Google Scholar 

  • Glen TD, Bruce ER, Samer A et al (2005) Are membrane bioreactors ready for widespread application? Environ Sci Technol 39:385–408

    Article  CAS  Google Scholar 

  • Hao XD, van Loosdrecht MCM (2006) Model-based evaluation of struvite recovery from P-released supernatant in a BNR process. Water Sci Technol 53(3):191–198

    Article  CAS  Google Scholar 

  • Jiang W, Zhang W, Li B et al (2011) Combined Fenton oxidation and biological activated carbon process for recycling of coking plant effluent. J Hazard Mater 189:308–314

    Article  CAS  Google Scholar 

  • Jianlong W, Xiangchun Q, Libo W et al (2002) Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochem 38:777–781

    Article  Google Scholar 

  • Kim Y, Lee JH, Kim YC et al (2015) Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate. Chem Eng Res Des 94:390–395

    Article  CAS  Google Scholar 

  • Kishor R, Bharagava RN, Saxena G (2019) Industrial wastewaters: the major sources of dye contamination in the environment, ecotoxicological effects, and bioremediation approaches. In: Bharagava RN (ed) Recent advances in environmental management. CRC Press Taylor & Francis, Boca Raton, p 13. ISBN: 978-0-8153-8314-7

    Google Scholar 

  • Kumar R, Pal P (2012) Response surface-optimized Fenton’s pre-treatment for chemical precipitation of struvite and recycling of water through downstream nanofiltration. Chem Eng J 210:33–44

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2013) Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes. Water Environ Res 85(5):447–455

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2013a) Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches. J Clean Prod 43:59–70

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2013b) A membrane-integrated advanced scheme for treatment of industrial wastewater: dynamic modeling towards scale up. Chemosphere 92:1375–1382

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2013c) Membrane-integrated hybrid bioremediation of industrial wastewater: a continuous treatment and recycling approach. J Water Reuse Desal 3:26–38

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2014) Membrane-integrated hybrid system for the effective treatment of ammoniacal wastewater of coke-making plant: a volume reduction approach. Environ Technol 35(16):2018–2027

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2015a) A novel forward osmosis-nano filtration integrated system for coke-oven wastewater reclamation. Chem Eng Res Des 100:542–553

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2015b) Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environ Sci Pollut Res 22:17453–17464

    Article  CAS  Google Scholar 

  • Kumar R, Bhakta P, Chakraborty S et al (2011) Separating cyanide from coke wastewater by cross flow nanofiltration. Sep Sci Technol 46:2119–2127

    Article  CAS  Google Scholar 

  • Kumar R, Chakrabortty S, Pal P (2015) Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation. Environ Sci Pollut Res 22:6010–6023

    Article  CAS  Google Scholar 

  • Lai P, Zhao HZ, al WC (2007) Advanced treatment of coking wastewater by coagulation and zero-valent iron processes. J Hazard Mater 147(1–2):232–239

    Article  CAS  Google Scholar 

  • Li H, Han H, Du M et al (2011) Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor. Bioresour Technol 102:4667–4673

    Article  CAS  Google Scholar 

  • Liu R, Huang X, Xi JY et al (2005) Microbial behaviour in a membrane bioreactor with complete sludge retention. Process Biochem 40:3165–3170

    Article  CAS  Google Scholar 

  • Liu Y, Liu J, Zhang A et al (2017) Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process. Environ Pollut 220:13–19

    Article  CAS  Google Scholar 

  • Lu XY, Li B, Zhang T et al (2012) Enhanced anoxic bioremediation of PAHs contaminated sediment. Bioresour Technol 104:51–58

    Article  CAS  Google Scholar 

  • Lubello C, Caffaz S, Mangini L et al (2007) MBR pilot plant for textile wastewater treatment and reuse. Water Sci Technol 55:115–124

    Article  CAS  Google Scholar 

  • Ma D, Liu C, Zhu X et al (2016) Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes. Environ Sci Pollut Res 23:18343–18352

    Article  CAS  Google Scholar 

  • Ma X, Wang X, Liu Y et al (2017) Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction. Ecotoxicol Environ Safe 138:163–169

    Article  CAS  Google Scholar 

  • Maranon E, Vazquez I, Rodriguez J et al (2008a) Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour Technol 99:4192–4198

    Article  CAS  Google Scholar 

  • Maranon E, Vazquez I, Rodriguez J et al (2008b) Coke wastewater treatment by a three-step activated sludge system. Water Air Soil Pollut 192:155–164

    Article  CAS  Google Scholar 

  • Marr R, Koucar M (1993) Recovery of ammonium-N from industrial wastewater. Int Chem Eng 33(3):416

    Google Scholar 

  • Marrone PA, Hodes M, Smith KA et al (2004) Salt precipitation and scale control in supercritical water oxidation-part B: commercial/full-scale applications. J Supercrit Fluids 29:289–312

    Article  CAS  Google Scholar 

  • Marrot B, Barrios-Martinez A, Moulin P et al (2004) Industrial wastewater treatment in a membrane bioreactor: a review. Environ Prog 23:59–68

    Article  CAS  Google Scholar 

  • Marvan IJ, Craig F, Sutton PM (1992) Treatability evaluation of coking plant effluent. Int Biodeterior Biodegradation 30:313–329

    Article  CAS  Google Scholar 

  • Mason TJ (1990) Chemistry with ultrasound, published for the Society of Chemical Industry. Elsevier, Amsterdam

    Google Scholar 

  • Moussavi G, Khosravi R (2010) Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: parametric experiments, kinetics and equilibrium analysis. J Hazard Mater 183:724–730

    Article  CAS  Google Scholar 

  • Ning N, Bart HJ, Jiang Y et al (2005) Treatment of organic pollutants in coke plant wastewater by the method of ultrasonic irradiation, catalytic oxidation and activated sludge. Sep Purif Technol 41:133–139

    Article  CAS  Google Scholar 

  • Okouchi S, Nojima O, Arai T (1992) Cavitation induced degradation of phenol by ultrasound. Water Sci Technol 26(9–11):2053–2056

    Article  CAS  Google Scholar 

  • Pal P, Kumar R (2014) Treatment of coke-wastewater: a critical review for developing sustainable management strategies. Sep Purif Rev 43(2):89–123

    Article  CAS  Google Scholar 

  • Pal P, Bhakta P, Kumar R (2014a) Cyanide removal from industrial wastewater by cross-flow nanofiltration: transport modeling and economic evaluation. Water Environ Res 86(8):698–708

    Article  CAS  Google Scholar 

  • Pal P, Kumar R, Srivastava N et al (2014b) A visual basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant. Environ Sci Pollut Res 21:1833–1849

    Article  CAS  Google Scholar 

  • Pal P, Abrar I, Kumar R (2015) Managing hazardous municipal wastewater: a membrane-integrated hybrid approach for fast and effective treatment in low temperature environment. J Membr Sci Technol 4(2):53–65

    CAS  Google Scholar 

  • Parga JR, Shukla SS, Carrillo-Pedroza FR (2003) Destruction of cyanide waste solutions using chlorine dioxide, ozone and Titania sol. Waste Manag 23:183–191

    Article  CAS  Google Scholar 

  • Park D, Kim YM, Lee DS et al (2008a) Chemical treatment for treating cyanides-containing effluent from biological cokes wastewater treatment process. Chem Eng J 143:141–146

    Article  CAS  Google Scholar 

  • Park D, Lee DS, Kim YM et al (2008b) Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresour Technol 99:2092–2096

    Article  CAS  Google Scholar 

  • Perez M, Torrades F, Domenech X et al (2002) Removal of organic contaminants in pulp effluents by AOPs: an economic study. J Chem Technol Biotechnol 77:525–532

    Article  CAS  Google Scholar 

  • Phuntsho S, Hong S, Elimelech M et al (2013) Forward osmosis desalination of brackish groundwater: meeting water quality requirements for fertigation by integrating nanofiltration. J Membr Sci 436:1–15

    Article  CAS  Google Scholar 

  • Pollice A, Laera G, Saturno D et al (2008) Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage. J Membr Sci 317:65–70

    Article  CAS  Google Scholar 

  • Qin JJ, Wai MN, Tao GH et al (2007) Membrane bioreactor study for reclamation of mixed sewage mostly from industrial sources. Sep Purif Technol 53:296–300

    Article  CAS  Google Scholar 

  • Rahman MM, Al-Malack MH (2006) Performance of a cross flow membrane bioreactor (CF-MBR) when treating refinery wastewater. Desalination 191:16–26

    Article  CAS  Google Scholar 

  • Reemtsma T, Zywicki B, Stueber M et al (2002) Removal of sulfur organic polar micropollutants in a membrane bioreactor treating industrial wastewater. Environ Sci Technol 36:1102–1106

    Article  CAS  Google Scholar 

  • Ren L, Schuchardt F, Shen Y et al (2010) Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk. Waste Manag 30:885–892

    Article  CAS  Google Scholar 

  • Richards DJ, Shieh WK (1989) Anoxic oxic activated sludge treatment of cyanides and phenols. Biotechnol Bioeng 33:32–38

    Article  CAS  Google Scholar 

  • Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41:977–984

    Article  CAS  Google Scholar 

  • Shen J, Zhao H, Cao H et al (2014) Chen, removal of total cyanide in coking wastewater during a coagulation process: significance of organic polymers. J Environ Sci 26:231–239

    Article  CAS  Google Scholar 

  • Staib C, Lant P (2007) Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater. Biochem Eng J 34:122–130

    Article  CAS  Google Scholar 

  • Strathmann H, Ho WS, Sirkar KK (eds) (1992) Membrane handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  • Tian DY, Lin ZF, Yu JQ et al (2012) Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects. Chemosphere 88(8):994–1000

    Article  CAS  Google Scholar 

  • Ueno Y, Fujii M (2001) Three years’ experience of operating and selling recovered struvite from full-scale plant. Environ Technol 22:1373–1381

    Article  CAS  Google Scholar 

  • Uysal A, Demir S, Sayilgan E et al (2014) Optimization of struvite fertilizer formation from baker’s yeast wastewater: growth and nutrition of maize and tomato plants. Environ Sci Pollut Res 21:3264–3274

    Article  CAS  Google Scholar 

  • Vázquez I, Rodríguez J, Marañón E et al (2006a) Study of aerobic biodegradation of coke wastewater in a two and three-step activated sludge process. J Hazard Mater 137:1681–1688

    Article  CAS  Google Scholar 

  • Vázquez I, Rodríguez J, Marañón E et al (2006b) Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation. J Hazard Mater 137:1773–1780

    Article  CAS  Google Scholar 

  • Yang WB, Cicek N, Ilg J (2006) State of the art of membrane bioreactors: worldwide research and commercial applications in North America. J Membr Sci 270:201–211

    Article  CAS  Google Scholar 

  • Yuan X, Sun H, Guo D (2012) The removal of COD from coking wastewater using extraction replacement–biodegradation coupling. Desalination 289:45–50

    Article  CAS  Google Scholar 

  • Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN (2019) Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech 9(3):92

    Article  Google Scholar 

  • Zhang M, Tay JH, Qian Y et al (1998) Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal. Water Res 32:591–527

    Google Scholar 

  • Zhang W, Wei CH, Peng PG (2010a) Components and degradation characteristics analysis of phenols in coking wastewater in biological fluidized bed A/A/O process. Chin J Environ Eng 4:253–258

    CAS  Google Scholar 

  • Zhang MH, Zhao QL, Bai X et al (2010b) Adsorption of organic pollutants from coking wastewater by activated coke. Coll Surf A Physicochem Eng Asp 362:140–146

    Article  CAS  Google Scholar 

  • Zhao WT, Huang X, Lee D et al (2009a) Use of submerged anaerobic–anoxic–oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention. J Membr Sci 330:57–64

    Article  CAS  Google Scholar 

  • Zhao WT, Huang X, Lee D (2009b) Enhanced treatment of coke plant wastewater using an anaerobic–anoxic–oxic membrane bioreactor system. Sep Purif Technol 66:279–286

    Article  CAS  Google Scholar 

  • Zhao WT, Shen YX, Xiao K et al (2010) Fouling characteristics in a membrane bioreactor coupled with anaerobic–anoxic–oxic process for coke wastewater treatment. Bioresour Technol 101:3876–3883

    Article  CAS  Google Scholar 

  • Zhao S, Zou L, Mulcahy D (2012) Brackish water desalination by a hybrid forward osmosis—nano filtration system using divalent draw solute. Desalination 284:175–181

    Article  CAS  Google Scholar 

  • Zhu X, Ni J, Lai P (2009) Advanced treatment of biologically retreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res 43:4347–4355

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are highly acknowledged to the University Grant Commission, Government of India for financial support under Dr. D.S. Kothari Post-Doctoral Fellowship sanctioned No. F.4-2/2006 (BSR)/EN/16-17/0001, September 01, 2016 (65th List).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Ghosh, A.K., Pal, P. (2020). Sustainable Management of Toxic Industrial Effluent of Coal-Based Power Plants. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_9

Download citation

Publish with us

Policies and ethics