Skip to main content

Application of Nanoparticles in Environmental Cleanup: Production, Potential Risks and Solutions

  • Chapter
  • First Online:
Emerging Eco-friendly Green Technologies for Wastewater Treatment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

Abstract

Wastes are unavoidable by-products of human production and consumption activities and have been a primary cause of environmental issues. The release of wastes such as pesticides, textile dyes, and heavy metals that end up polluting environment have endangered not only human health but also biodiversity in general. According to recent developments, the use of nanotechnology for environmental cleanup is evidently promising. Enhanced properties of nanoparticles attributed to their larger surface area enable them to perform in a number of remediation methods such as absorption, adsorption, filtration, chemical reaction, and photocatalysis. This chapter focuses on the applications of four groups of nanomaterials: zero-valent iron nanoparticles, carbon nanotubes, zeolites, and metal oxide nanoparticles for environmental remediation. As a growing research priority, the development of nanotechnology for environmental cleanup has also raised significant concerns on nanoparticle production routes that can be technically challenging. Various fabrication methods ranging from conventional pathways such as physical, chemical, and electrochemical to novel production technique involving biosynthesis are discussed in this review. Despite the useful application, exposures to nanomaterials in the environment also bring potential hazards to plants, animals, and humans. This chapter discusses possible solutions for the aforementioned issue and provides a summary of recent developments of nanoparticle utilization for textile dye and toxic pollutant removals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi M, Rafique U, Murtaza G (2018) Synthesis, characterization and photocatalytic performance of ZnS coupled Ag2S nanoparticles: a remediation model for environmental pollutants. Arab J Chem 11:827–837

    Article  CAS  Google Scholar 

  • Abdillah F, Pramudita D, Indarto A (2018) Nanotechnology: an emerging technology for bioremediation of environmental pollutants. In: Recent advances in environmental management. CRC Press, p 35

    Google Scholar 

  • Adhikari S, Sarath CK, Kim DH (2018) Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv Powder Technol 29:1591–1600

    Article  CAS  Google Scholar 

  • Agnihotri S, Mota JPB, Rostam-Abadi M (2006) Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J Phys Chem B 110(15):7640–7647

    Article  CAS  Google Scholar 

  • Ahuja P, Ujjain SK, Arora I (2018) Hierarchically grown NiO-decorated polyaniline-reduced graphene oxide composite for ultrafast sunlight-driven photocatalysis. ACS Omega 3:7846–7855

    Article  CAS  Google Scholar 

  • Alamelu K, Raja V, Shiamala L (2018) Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl Surf Sci 430:145–154

    Article  CAS  Google Scholar 

  • Ali S, Granbohm H, Lahtinen J (2018) Titania nanotubes prepared by rapid breakdown anodization for photocatalytic decolorization of organic dyes under UV and natural solar light. Nanoscale Res Lett 13:179

    Article  CAS  Google Scholar 

  • Annan E, Agyei-Tuffor B, Bensah YW (2018) Application of clay ceramics and nanotechnology in water treatment: a review. Cogent Eng 5(1):1–35

    Article  Google Scholar 

  • Aoudjit L, Martins PM, Madjene F (2018) Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. J Hazard Mater 344:408–416

    Article  CAS  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37:1143–1156

    Article  CAS  Google Scholar 

  • Ashby MF, Ferreira PJ, Schodek DL (2009) Nanomaterials, nanotechnologies, and design. Elsevier, Oxford

    Google Scholar 

  • Auffan M, Decome L, Rose J (2006) In vitro interactions between DMSA-coated maghemite nano particles and human fibroblast: a physico-chemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373

    Article  CAS  Google Scholar 

  • Bashir O, Khan MN, Khan TA (2017) Influence of stabilizing agents on the microstructure of co-nanoparticles for removal of Congo red. Environ Technol Innov 8:327–342

    Article  Google Scholar 

  • Buchholcz B, Haspel H, Oszko A (2017) Titania nanotube stabilized BiOCl nanoparticles in visible-light photocatalysis. RSC Adv 7:16410–16422

    Article  CAS  Google Scholar 

  • Cao J, Elliott D, Zhang W (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    Article  CAS  Google Scholar 

  • Carabante I, Grahn M, Holmgren A (2012) Influence of Zn(II) on the adsorption of arsenate onto ferrihydrite. Environ Sci Technol 46(24):13152–13159

    Article  CAS  Google Scholar 

  • Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56(4):1561–1570

    Article  CAS  Google Scholar 

  • Chen J, Pu Y, Wang C (2018) Synthesis of a novel nanosilica-supported poly β-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution. Colloids Surf A Physicochem Eng Asp 538:808–817

    Article  CAS  Google Scholar 

  • Cheng Q, Deng X, Zhang H (2018) Microwave assisted construction of Ag-AgBr/reduced TiO2 nano-tube arrays photoelectrode and its enhanced visible light photocatalytic performance for degradation of 4-chlorphenol. Sep Purif Technol 193:255–263

    Article  CAS  Google Scholar 

  • Christian F, Edith S, Adityawarman D, Indarto A (2013) Application of nanotechnologies in the energy sector: a brief and short review. Front Energy 7(1):6–18

    Article  Google Scholar 

  • Colella C (1996) Ion-exchange equilibria in zeolite minerals. Mineral Deposita 31(6):554–562

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  CAS  Google Scholar 

  • Dai G, Yu J, Liu G (2012) A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity. J Phys Chem C 116(29):15519–15524

    Article  CAS  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:1–14

    Article  CAS  Google Scholar 

  • Ditta IB, Steele A, Liptrot C (2008) Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 79(1):127

    Article  CAS  Google Scholar 

  • Eyde TH (2010) Zeolites. Miner Eng 62:86

    Google Scholar 

  • Fei X, Cao L, Zhou L (2012) Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite. Water Sci Technol 66:2539–2545

    Article  CAS  Google Scholar 

  • Fukahori S, Ichiura H, Kitaoka T (2003) Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets. Appl Catal B Environ 46(3):453–462

    Article  CAS  Google Scholar 

  • Gadhave A, Waghmare J (2014) Removal of heavy metal ions from wastewater by carbon nanotubes. Int J Chem Sci Appl 5:56–67

    Google Scholar 

  • Gagrani A, Zhou J, Tsuzuki T (2018) Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B. Ceram Int 44:4694–4698

    Article  CAS  Google Scholar 

  • Gao Y, Wahi R, Kan AT (2004) Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH. Langmuir 20(22):9585–9593

    Article  CAS  Google Scholar 

  • Gao Z, Yi Y, Zhao J (2018) Co-immobilization of laccase and TEMPO onto amino-functionalized magnetic Fe3O4 nanoparticles and its application in acid fuchsin decolorization. Bioresour Bioprocess 5:27

    Article  Google Scholar 

  • Ge M, Zhu N, Zhao Y (2012) Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension. Ind Eng Chem Res 51(14):5167–5173

    Article  CAS  Google Scholar 

  • Goyal A, Sharma R, Bansal S et al (2018) Functionalized core-shell nanostructures with inherent magnetic character: outperforming candidates for the activation of PMS. Adv Powder Technol 29:245–256

    Article  CAS  Google Scholar 

  • Guan X, Du J, Meng X (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215:1–16

    Article  CAS  Google Scholar 

  • Guerra FD, Attia MF, Whitehead DC (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23(7):1760

    Article  CAS  Google Scholar 

  • Gupta V, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45(6):2207–2212

    Article  CAS  Google Scholar 

  • Haggerty MG, Bowman SR (1994) Sorption of chromate and other inorganic anions by organo-zeolite. Environ Sci Technol 28(3):452–458

    Article  CAS  Google Scholar 

  • Handy H, Santoso A, Widodo A, Palgunadi J, Soerawidjaja TH, Indarto A (2014) H2S–CO2 separation using room temperature ionic liquid [BMIM][Br]. Sep Sci Technol 49:2079–2084

    Article  CAS  Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Pena DCC (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4(3):237–240

    Article  CAS  Google Scholar 

  • Hu J, Lo I, Chen G (2004) Removal of Cr (VI) by magnetite. Water Sci Technol 50(12):139–146

    Article  CAS  Google Scholar 

  • Huang Q, Liu M, Mao L (2017) Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface-initiated atom transfer radical polymerization: characterization and enhanced removal of organic dye. J Colloid Interface Sci 499:170–179

    Article  CAS  Google Scholar 

  • Hyung KS, Choi J-W, Lee H, Indarto A (2005) Gliding arc plasma processing for decomposition of chloroform. Toxicol Environ Chem 87(4):509–519

    Article  CAS  Google Scholar 

  • Indarto A (2012) Heterogeneous reactions of HONO formation from NO2 and HNO3: a review. Res Chem Intermed 38:1029–1041

    Article  CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006a) Decomposition of CCl4 and CHCl3 on gliding arc plasma. J Environ Sci 18(1):83–89

    CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006b) Treatment of CCl4 and CHCl3 emission in a gliding-arc plasma. Plasma Dev Oper 14(1):1–14

    Article  CAS  Google Scholar 

  • Indarto A, Choi J-W, Lee H, Song HK (2008) The kinetic studies of direct methane oxidation to methanol in the plasma process. Sci Bull 53(18):2783–2792

    Article  CAS  Google Scholar 

  • Indarto A, Lee H, Choi J-W, Song HK (2015) Partial oxidation of methane with yttria-stabilized zirconia catalyst in a dielectric barrier discharge. Energy Source A 30(17):1628–1636

    Article  CAS  Google Scholar 

  • Inglezakis LV, Grigoropoulou H (2004) Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors. J Hazard Mater 112:37–43

    Article  CAS  Google Scholar 

  • Irfan S, Rizwan S, Shen Y (2017) The gadolinium (Gd3+) and tin (Sn4+) Co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci Rep 7:42493

    Article  CAS  Google Scholar 

  • Ismail AA, Faisal M, Al-Haddad A (2018) Mesoporous WO3-graphene photocatalyst for photocatalytic degradation of Methylene Blue dye under visible light illumination. J Environ Sci 66:328–337

    Article  Google Scholar 

  • ITRC: Permeable Reactive Barrier: Technology Update (2011) Interstate Technology & Regulatory Council (website). http://www.itrcweb.org. Accessed 28 July 2017

  • Jamei MR, Khosravi MR, Anvaripour B (2013) Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method: ultrasonic effect on synthesis of nZVI particles. Asia Pac J Chem Eng 8:767–774

    Article  CAS  Google Scholar 

  • Jamei MR, Khosravi MR, Anvaripour B (2014) A novel ultrasound assisted method in synthesis of NZVI particles. Ultrason Sonochem 21:226–233

    Article  CAS  Google Scholar 

  • Jegadeesan G, Mondal K, Lalvani S (2005) Arsenate remediation using nanosized modified zerovalent iron particles. Environ Prog Sustain Energy 24:289–296

    CAS  Google Scholar 

  • Jin T, Sun D, Su JY (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J Food Sci 74(1):M46–M52

    Article  CAS  Google Scholar 

  • Jo WK, Kim YG, Tonda S (2018) Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: highly efficient visible-light-driven composite photocatalysts for environmental remediation. J Hazard Mater 357:19–29

    Article  CAS  Google Scholar 

  • Jothibas M, Manoharan C, Jeyakumar SJ (2018) Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol Energy 159:434–443

    Article  CAS  Google Scholar 

  • Juneja S, Madhavan AA, Ghosal A (2018) Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity. J Hazard Mater 347:378–389

    Article  CAS  Google Scholar 

  • Kalhori EM, Al-Musawi TJ, Ghahramani E (2017) Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: studies on the kinetic, isotherm, and effects of environmental parameters. Chemosphere 175:8–20

    Article  CAS  Google Scholar 

  • Kandah MI, Meunier JL (2007) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 146(1):83–288

    Google Scholar 

  • Kanel SR, Manning B, Charlet L (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:129–298

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche J, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Ott M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831

    Article  Google Scholar 

  • Karunakaran C, Abiramasundari G, Gomathisankar P (2011a) Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater Res Bull 46(10):1586–1592

    Article  CAS  Google Scholar 

  • Karunakaran C, Vijayabalan A, Manikandan G (2011b) Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catal Commun 12(9):826–829

    Article  CAS  Google Scholar 

  • Kihara T, Zhang Y, Hu Y (2011) Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity. J Biosci Bioeng 111(6):725–730

    Article  CAS  Google Scholar 

  • Kim SA, Kamala-Kannan S, Lee KJ (2013) Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  CAS  Google Scholar 

  • Kim DY, Kadam A, Shinde S (2018) Recent developments in nanotechnology transforming the agricultural sector a transition replete with opportunities. J Sci Food Agric 98(3):849–864

    Article  CAS  Google Scholar 

  • Kirankumar VS, Sumathi S (2017) Catalytic activity of bismuth doped zinc aluminate nanoparticles towards environmental remediation. Mater Res Bull 93:74–82

    Article  CAS  Google Scholar 

  • Kong SH, Watts RJ, Choi JH (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37(8):1473–1482

    Article  CAS  Google Scholar 

  • Kumar N, Kumbhat S (2016) Essentials in nanoscience and nanotechnology. Wiley, Hoboken

    Book  Google Scholar 

  • Kumar A, Naushad M, Rana A (2017) ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: symbiose of adsorption and photocatalysis. Int J Biol Macromol 104:1172–1184

    Article  CAS  Google Scholar 

  • Lehman SE, Larsen SC (2014) Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ Sci Nano 1:200–213

    Article  CAS  Google Scholar 

  • Li S, Yan W, Zhang W (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626

    Article  CAS  Google Scholar 

  • Li YH, Zhu Y, Zhao Y (2016) Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam Relat Mater 15(1):90–94

    Article  CAS  Google Scholar 

  • Li G, Li Y, Wang Z (2017) Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater Chem Phys 187:133–140

    Article  CAS  Google Scholar 

  • Li S, Hu S, Jiang W (2018) Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. J Colloid Interface Sci 530:171–178

    Article  CAS  Google Scholar 

  • Lim TT, Yap PS, Srinivasan M (2011) TiO2/AC composites for synergistic adsorption photocatalysis processes: present challenges and further developments for water treatment and reclamation. Crit Rev Environ Sci Technol 41(13):1173–1230

    Article  CAS  Google Scholar 

  • Lin J, Lai Q, Liu Y (2017) Laccase-methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. Int J Biol Macromol 102:144–152

    Article  CAS  Google Scholar 

  • Liou Y, Lo S, Kuan W (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40:2485–2492

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2012a) Nanoenhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnol 2012:1–17

    Google Scholar 

  • Liu R, Lal R (2012b) A laboratory study on improvement of mine soil quality for re-vegetation through various amendments. In: Proceedings of the ASA-CSSA-SSSA international annual meetings, Cincinnati

    Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2008a) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954

    Article  CAS  Google Scholar 

  • Liu Y, Wang X, Yang F (2008b) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater 114(1):431–439

    Article  CAS  Google Scholar 

  • Liu Y, Gao T, Xiao H (2017) One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim Acta 229:239–252

    Article  CAS  Google Scholar 

  • Lonnen J, Kilvington S, Kehoe S (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39(5):877–883

    Article  CAS  Google Scholar 

  • Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  CAS  Google Scholar 

  • Ma J, Xiao R, Li J (2010) Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry. J Chromatogr A 1217(34):5462–5469

    Article  CAS  Google Scholar 

  • Mace C, Desrocher S, Gheorghiu F (2006) Nanotechnology and groundwater remediation: a step forward in technology understanding. Remediation 16(2):22–33

    Article  Google Scholar 

  • Machado S, Pinto SL, Grosso JP (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8

    Article  CAS  Google Scholar 

  • Machado S, Grosso JP, Nouws HPA (2014) Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci Total Environ 496:233–240

    Article  CAS  Google Scholar 

  • Mahmoud MM, Osman M, Ahmed SB (2011) Improved adsorptive removal of cadmium from water by hybrid chemically and biologically carbonaceous sorbents. Chem Eng J 175:84–94

    Article  CAS  Google Scholar 

  • Manning B, Kiser J, Kwon H (2007) Spectroscopic investigation of Cr (III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 4:586–592

    Article  CAS  Google Scholar 

  • Metcalf EE, Eddy H (2003) Wastewater engineer treatment disposal, reuse. McGraw, New York

    Google Scholar 

  • Miller GT (2004) Sustaining the earth, 6th edn. Thompson Learning, California

    Google Scholar 

  • Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture and environmental soil remediation. Rev Mineral Geochem 45(1):619–654

    Article  CAS  Google Scholar 

  • Mueller NC, Braun J, Bruns J (2012) Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558

    Article  CAS  Google Scholar 

  • Nagar N, Devra V (2017) Activation of peroxodisulfate and peroxomonosulfate by green synthesized copper nanoparticles for Methyl Orange degradation: a kinetic study. J Environ Chem Eng 5:5793–5800

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    Article  CAS  Google Scholar 

  • Naraginti S, Li Y, Puma GL (2018) Photocatalytic mineralization and degradation kinetics of sulphamethoxazole and reactive red 194 over silver-zirconium co-doped titanium dioxide: reaction mechanisms and phytotoxicity assessment. Ecotoxicol Environ Saf 159:301–309

    Article  CAS  Google Scholar 

  • National Toxicology Program (2006) NTP nanotechnology safety initiative. https://ntp.niehs.nih.gov/ntp/factsheets/nanocolor06srch.pdf

  • Neppolian B, Choi HC, Sakthivel S (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89(2):303–317

    Article  CAS  Google Scholar 

  • NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. https://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf

  • Nowack B, Bucheli TD (2007) Occurrence, behaviour and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  Google Scholar 

  • Otto M, Floyd M, Bajpai S (2008) Nanotechnology for site remediation. Rem 19(1):99–108

    Google Scholar 

  • Oun A, Tahri N, Mahouche-Chergui S (2017) Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: elaboration, characterization and application to dye removal. Sep Purif Technol 188:126–133

    Article  CAS  Google Scholar 

  • Palmer WE, Bromley PT, Brandenburg RL (2007) Wildlife & pesticides—Peanuts. North Carolina Cooperative Extension Service.

    Google Scholar 

  • Pan J, Liu J, Zuo S (2018) Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination. Appl Surf Sci 444:177–186

    Article  CAS  Google Scholar 

  • PARS Environmental Inc. (2004) NanoFeâ„¢: an innovative remediation technology for soils and groundwater. http://www.parsenviro.com/nanofeaw-1.html

  • Pasini M (1991) Natural zeolites as cation exchangers for environmental protection. Mineral Deposita 31(6):563–575

    Article  Google Scholar 

  • Pawinrat P, Mekasuwandumrong O, Panpranot J (2009) Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun 10(10):1380–1385

    Article  CAS  Google Scholar 

  • Peng X, Luan Z, Di Z (2005a) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water. Carbon 43(4):880–883

    Article  CAS  Google Scholar 

  • Peng X, Luan Z, Ding J (2005b) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59(4):399–403

    Article  CAS  Google Scholar 

  • Quan G, Zhang J, Guo J (2014) Removal of Cr(VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water Air Soil Pollut 225:1–11

    Google Scholar 

  • Quinn J, Geiger C, Clausen C (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318

    Article  CAS  Google Scholar 

  • Rachna, Rani M, Shanker U (2018) Enhanced photocatalytic degradation of chrysene by Fe2O3@ZnHCF nanocubes. Chem Eng J 348:754–764

    Article  CAS  Google Scholar 

  • Rauscher H, Rasmussen K, Sokull-Klüttgen B (2017) Regulatory aspects of nanomaterials in the EU. Chem Ing Tech 89(3):224–231

    Article  CAS  Google Scholar 

  • Rawat J, Rana S, Srivastava R (2007) Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C 27(3):540–545

    Article  CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762

    Article  CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14(2):124–133

    Article  Google Scholar 

  • Ren ZH, Li HT, Gao Q (2017) Au nanoparticles embedded on urchin-like TiO2 nanosphere: an efficient catalyst for dyes degradation and 4-nitrophenol reduction. Mater Des 121:167–175

    Article  CAS  Google Scholar 

  • Rout L, Kumar A, Dhaka RS (2017) Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: synthesis, catalytic activity and investigation of synergistic effect by DFT analysis. Appl Catal A Gen 538:107–122

    Article  CAS  Google Scholar 

  • Saleh TA, Gondal M, Drmosh Q (2010) Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology 21(49):495705

    Article  CAS  Google Scholar 

  • Salem MA, Bakr EA, El-Attar HG (2018) Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc 188:155–163

    Article  CAS  Google Scholar 

  • Saran S, Manjari G, Devipriya SP (2018) Synergistic eminently active catalytic and recyclable Ag, Cu and Ag-Cu alloy nanoparticles supported on TiO2 for sustainable and cleaner environmental applications: a phytogenic mediated synthesis. J Clean Prod 177:134–143

    Article  CAS  Google Scholar 

  • Senasu T, Hemavibool K, Nanan S (2018) Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation. RSC Adv 8:22592–22605

    Article  CAS  Google Scholar 

  • Shan G, Yan S, Tyagie RD (2009) Applications of nanomaterials in environmental science and engineering: review. Pract Period Hazard Toxic Radioact Waste Manag 13(2):110–119

    Article  CAS  Google Scholar 

  • Shi Z, Fan D, Johnson RL (2015) Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. J Contam Hydrol 181:17–35

    Article  CAS  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397

    Article  CAS  Google Scholar 

  • Sohn K, Kang S, Ahn S (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40:5514–5519

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Sun YP, Li X, Cao J (2006) Characterization of zero-valent iron particles. Adv Colloid Interf Sci 120:47–56

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Zhang WX (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf A Physicochem Eng Asp 308:60–66

    Article  CAS  Google Scholar 

  • Tantra R (2016) Nanomaterial characterization: an introduction. Wiley, Hoboken

    Book  Google Scholar 

  • Tao NR, Sui ML, Lu J (1999) Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostruct Mater 11:433–440

    Article  CAS  Google Scholar 

  • Tharunya P, Subha V, Kirubanandan S (2017) Green synthesis of superparamagnetic iron oxide nanoparticle from Ficus carica fruit extract, characterization studies and its application on dye degradation studies. Asian J Pharm Clin Res 10:125–128

    CAS  Google Scholar 

  • Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185(1):140–147

    Article  CAS  Google Scholar 

  • U.S. EPA (2014) Human health issues related to pesticides. U.S. Environmental Protection Agency, Washington, DC. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/human-health-issues-related-pesticides

    Google Scholar 

  • Ulucan K, Noberi C, Coskun T (2013) Disinfection by-products removal by nanoparticles sintered in zeolite. J Clean Energy Technol 1(2):120–123

    Article  CAS  Google Scholar 

  • Wang CB, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang D, Hu J, Forthaus BE (2011) Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia. Environ Pollut 159(10):3003–3008

    Article  CAS  Google Scholar 

  • Wang N, Hu Y, Zhang Z (2017a) Sustainable catalytic properties of silver nanoparticles supported montmorillonite for highly efficient recyclable reduction of methylene blue. Appl Clay Sci 150:47–55

    Article  CAS  Google Scholar 

  • Wang S, Zhang X, Li S (2017b) C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications. J Hazard Mater 331:235–245

    Article  CAS  Google Scholar 

  • Wang L, Lu F, Liu Y (2018a) Photocatalytic degradation of organic dyes and antimicrobial activity of silver nanoparticles fast synthesized by flavonoids fraction of Psidium guajava L. leaves. J Mol Liq 263:87–19

    Google Scholar 

  • Wang PT, Song YH, Fan HC (2018b) Bioreduction of azo dyes was enhanced by in-situ biogenic palladium nanoparticles. Bioresour Technol 266:176–180

    Article  CAS  Google Scholar 

  • Wells M (2007) Vanishing Bees Threaten U.S. Crops. http://news.bbc.co.uk/2/hi/americas/6438373.stm

  • Wu CH, Lin JT, Lin KYA (2018) Magnetic cobaltic nanoparticle-anchored carbon nanocomposite derived from cobalt-dipicolinic acid coordination polymer: an enhanced catalyst for environmental oxidative and reductive reactions. J Colloid Interface Sci 517:124–133

    Article  CAS  Google Scholar 

  • Xiong SJ, Xu WH, Xie WW (2015) Effect of nano zeolite on chemical fractions of cd in soil and its uptake by cabbage. Huan Jing Ke Xue 36(12):4630–4641

    CAS  Google Scholar 

  • Xu T, Cai Y, O’Shea KE (2007) Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ Sci Technol 41(15):5471–5477

    Article  CAS  Google Scholar 

  • Xu YC, Tang YP, Liu LF (2017) Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy. J Membr Sci 526:32–42

    Article  CAS  Google Scholar 

  • Yang D, Zheng Z, Liu H (2008) Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J Phys Chem C 112(42):16275–16280

    Article  CAS  Google Scholar 

  • Yao Y, Zhang J, Gao M (2018) Activation of persulfates by catalytic nickel nanoparticles supported on N-doped carbon nanofibers for degradation of organic pollutants in water. J Colloid Interface Sci 529:100–110

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2):572–575

    Article  CAS  Google Scholar 

  • Yoon J, Shim E, Bae S (2009) Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr (VI)) in water. J Hazard Mater 161(2):1069–1074

    Article  CAS  Google Scholar 

  • Yunus LS, Harwin, Kurniawan A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1:136–148

    Article  CAS  Google Scholar 

  • Zazouli MA, Ghanbari F, Yousefi M (2017) Photocatalytic degradation of food dye by Fe3O4-TiO2 nanoparticles in presence of peroxymonosulfate: the effect of UV sources. J Environ Chem Eng 5:2459–2468

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332

    Article  CAS  Google Scholar 

  • Zhang X, Zhao X, Su H (2011) Degradation characteristic of TiO2-chitosan adsorbent on Rhodamine B and purification of industrial wastewater. Korean J Chem Eng 28(5):1241–1246

    Article  CAS  Google Scholar 

  • Zhang C, Yu Y, Wei H (2018) In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation. Appl Surf Sci 456:577–585

    Article  CAS  Google Scholar 

  • Zhao H, Yu H, Quan X (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B Environ 152–153(Suppl C):46–50

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Liang HP (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18(18):2426–2431

    Article  CAS  Google Scholar 

  • Zhou Q, Xiao J, Wang W (2006) Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta 68(4):1309–1315

    Article  CAS  Google Scholar 

  • Zhou W, Fu H, Pan K (2008) Mesoporous TiO2/α-Fe2O3: bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J Phys Chem C 112(49):19584–19589

    Article  CAS  Google Scholar 

  • Zhu Y, Zhu R, Zhu G (2018) Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity. Appl Surf Sci 433:458–467

    Article  CAS  Google Scholar 

  • Zorpas AA, Constantinides T, Vlyssides AG (2000) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour Technol 72(2):113–119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius Indarto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Handojo, L., Pramudita, D., Mangindaan, D., Indarto, A. (2020). Application of Nanoparticles in Environmental Cleanup: Production, Potential Risks and Solutions. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_3

Download citation

Publish with us

Policies and ethics