Skip to main content

Aggregation of LARK Vectors for Facial Image Classification

  • Conference paper
  • First Online:
Mathematical Modelling and Scientific Computing with Applications (ICMMSC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

Abstract

Face recognition is prevailing to be a key aspect wherever there is a need for interaction between humans and machines. This can be achieved by containing a set of sketches for all the possible individuals and then cross-validating at necessary circumstances. We propose a mechanism to fulfil this task which is centred on locally adaptive regression kernels. A comparative study has been presented at encoding stages as well as at the classification stages of the pipeline. The results are cautiously examined and analyzed to deduce the best mechanism out of the proposed methodologies. All the ideologies have been tested for multiple iterations on benchmark datasets like ORL, grimace and faces 95. The vectorized descriptors have been subjected to encoding using slightly refined methods of feature aggregation and clustering to assist classifiers in imputing the test subjects to their respective classes. The encoded vectors are classified using Gaussian Naive Bayes, Stochastic Gradient Descent classifier, linear discriminant analysis and K Nearest Neighbour to accomplish face recognition. An inference on sparse nature of locally adaptive regression kernels was made from the experimentation. A rigorous study regarding the discrepancies of the performance of LARK descriptors is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seo, H.J., Milanfar, P.: Face verification using the LARK representation. IEEE Trans. Inf. Forensics Secur. 6(4), 1275–1286 (2011)

    Article  Google Scholar 

  2. Meena, K., Suruliandi, A.: Local binary patterns and its variants for face recognition. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu, pp. 782–786 (2011)

    Google Scholar 

  3. Hadid, A.: The local binary pattern approach and its applications to face analysis. In: 2008 First Workshops on Image Processing Theory, Tools and Applications, Sousse, pp. 1–9 (2008)

    Google Scholar 

  4. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  5. Ramanathan, N., Chellappa, R.: Face verification across age progression. IEEE Trans. Image Process. 15(11), 3349–3361 (2006)

    Article  Google Scholar 

  6. Osman, A.A.E., El-Khoribi, R.A., Shoman, M.E., Shalaby, M.A.W.: Trajectory learning using posterior hidden Markov model state distribution. Egypt. Inform. J. (2017)

    Google Scholar 

  7. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of IEEE Conference Computer Vision and Computer Vision (CVPR), pp. 586–591 (1991)

    Google Scholar 

  8. He, K., Zhou, D., Nie, R., Jin, X., Wang, Q.: Image specific target detection and localization based on locally adaptive regression kernels algorithm. In: 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, pp. 647–651 (2016)

    Google Scholar 

  9. Ali, N.M., Jun, S.W., Karis, M.S., Ghazaly, M.M., Aras, M.S.M.: Object classification and recognition using Bag-of-Words (BoW) model. In:  2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), Malacca City, pp. 216–220 (2016)

    Google Scholar 

  10. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained Linear Coding for image classification. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 3360–3367 (2010)

    Google Scholar 

  11. Zhang, W., Gao, F.: Performance analysis and improvement of naïve Bayes in text classification application. In: IEEE Conference Anthology, China, pp. 1–4 (2013)

    Google Scholar 

  12. Chen, Y.P., Liu, C.H., Chou, K.Y., Wang, S.Y.: Real-time and low-memory multi-face detection system design based on naive Bayes classifier using FPGA. In: 2016 International Automatic Control Conference (CACS), Taichung, pp. 7–12 (2016)

    Google Scholar 

  13. Ouarda, W., Trichili, H., Alimi, A.M., Solaiman, B.: Combined local features selection for face recognition based on Naïve Bayesian classification. In:  13th International Conference on Hybrid Intelligent Systems (HIS 2013), Gammarth, pp. 240–245 (2013)

    Google Scholar 

  14. Liu, Q., Liu, C.: A novel locally linear KNN method with applications to visual recognition. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2010–2021 (2017)

    MathSciNet  Google Scholar 

  15. Parveen, P., Thuraisingham, B.: Face recognition using multiple classifiers. In: 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), Arlington, VA, pp. 179–186 (2006)

    Google Scholar 

  16. Uchida, Y., Sakazawa, S.: Image retrieval with fisher vectors of binary features. In: 2013 2nd IAPR Asian Conference on Pattern Recognition, Naha, pp. 23–28 (2013)

    Google Scholar 

  17. Chelali, F.Z., Djeradi, A., Djeradi, R.: Linear discriminant analysis for face recognition. In: 2009 International Conference on Multimedia Computing and Systems, Ouarzazate, pp. 1–10 (2009)

    Google Scholar 

  18. Taneja, S., Gupta, C., Goyal, K., Gureja, D.: An enhanced K-nearest neighbor algorithm using information gain and clustering. In: 2014 Fourth International Conference on Advanced Computing & Communication Technologies, Rohtak, pp. 325–329 (2014)

    Google Scholar 

  19. Putranto, E.B., Situmorang, P.A., Girsang, A.S.: Face recognition using eigenface with Naive Bayes. In: 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, pp. 1–4 (2016)

    Google Scholar 

  20. Dr Libor SpaceK.: Collection of Facial Images: Grimace (Online) (2007). Retrieved from: http://cswww.essex.ac.uk/mv/allfaces/grimace.html

  21. Dr Libor SpaceK.: Collection of Facial Images: Faces95 (Online) (2007). Retrieved from:http://cswww.essex.ac.uk/mv/allfaces/faces95.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayaka R. Kamath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinay, A., Kamath, V.R., Varun, M., Nidheesh, Natarajan, S., Murthy, K.N.B. (2020). Aggregation of LARK Vectors for Facial Image Classification. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_31

Download citation

Publish with us

Policies and ethics