Skip to main content

Finite Element Analysis of MHD Blood Flow in Stenosed Coronary Artery with the Suspension of Nanoparticles

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

Abstract

The numerical study presents a two dimensional mathematical modelling and computational simulation of blood flow in a stenosed coronary artery in the presence of magnetic field. Blood flow model is considered based on second grade fluid flow and heat transfer with the suspension of nanoparticles. Vogel’s model is employed for viscosity of blood as a function of temperature. In order to complete our model, the variability in design and size of stenosis is considered. The finite element method is used to solve the transformed conservation equations numerically in conjunction of variational approach and FreeFEM++. The results show that an increase in the thermophoresis parameter (\( N_{t} \)) decreases the velocity while the increment in the Brownian motion parameter (\( N_{b} \)) increases the velocity in the whole domain. An increase in \( N_{t} \) and Brownian motion parameter (\( N_{b} \)), there is an increase in temperature values and nanoparticles concentration at the throat of the stenosis and as well as in the remaining domain. These properties changes in the domain by changing the shapes and designs of the stenosis in the domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A, B:

Constants in viscosity function

B r :

Brownian diffusion constant

D b :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

g:

Gravitational vector

\( \alpha_{1} ,\,\alpha_{2} \) :

Material modules

G r :

Grashof Number

\( B_{0} \) :

Magnetic field

\( \rho_{f} \) :

Density of the base fluid

\( \rho_{p} \) :

Density of the nanoparticles

M :

Magnetohydrodynamics parameter

\( N_{b} \) :

Brownian motion parameter

\( N_{t} \) :

Thermophoresis parameter

V :

Velocity vector

\( A_{1} ,\,A_{2} \) :

Rilvin Erickson Tensors

J :

Electric current density

\( \theta \) :

Temperature

\( \kappa \) :

Thermal conductivity

Φ :

Nanoparticle volume fraction

\( \lambda_{1} \) :

Viscoelastic parameter

References

  1. Fung, Y.C.: The flow properties of blood. In Biomechanics: Mechanical properties of living tissues, Springer, Berlin, pp. 62–98 (1981)

    Chapter  Google Scholar 

  2. Biswas, D.: Blood flow models: a comparative study. Mittal Publications, Delhi (2000)

    Google Scholar 

  3. Merrill, E.W.: Rheology of human blood and some speculations on its role in vascular homeostasis. In: Biomechanical Mechanisms in Vascular Homeostasis and Intravascular Thrombus (1965)

    Google Scholar 

  4. Taylor, M.G.: The influence of the anomalous viscosity of blood upon its oscillatory flow. Phys. Med. Biol. 3(3), 273 (1959)

    Article  Google Scholar 

  5. Baieth, H.E.A.: Physical parameters of blood as a non-Newtonian fluid. Int. J. Biomed. Sci. IJBS 4(4), 323 (2008)

    Google Scholar 

  6. Moreno, C., Bhaganagar, K.: Modeling of Stenotic coronary artery and implications of plaque morphology on blood flow. Model. Simul. Eng. 2013, 14 (2013)

    Google Scholar 

  7. Sauvage, E.: Patient-specific blood flow modelling. Ph.D. diss., Ph. D. Thesis, Université catholique de Louvain (2014)

    Google Scholar 

  8. Ali, N., Zaman, A., Sajid, M., Anwar Bég, O., Shamshuddin, M.D., Kadir, A.: Numerical simulation of time-dependent non-newtonian nanopharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanosci. Technol. Int. J. 9(3), 247–282 (2018)

    Article  Google Scholar 

  9. Mathur, P., Jain, S.: Mathematical modelling of non-Newtonian blood flow through artery in the presence of stenosis. Appl. Math. Biosci. 4(1), 1–12 (2013)

    Article  Google Scholar 

  10. Akbar, N.S.: Non-Newtonian model study for blood flow through a tapered artery with a stenosis. Alexandria Eng. J. 55(1), 321–329 (2016)

    Article  Google Scholar 

  11. Godson, L., Raja, B., Mohan Lal, D., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14(2), 629–641 (2010)

    Article  Google Scholar 

  12. Li, Q., Xuan, Y.: Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci. China Ser. E Technol. Sci. 45(4), 408–416 (2002)

    Article  Google Scholar 

  13. Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998)

    Article  Google Scholar 

  14. Lee, S., Choi, S.U.S., Li, S., Eastman, J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(2), 280–289 (1999)

    Article  Google Scholar 

  15. Kumar, K.P., Paul, W., Sharma, C.P.: Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46(10), 2007–2013 (2011)

    Article  Google Scholar 

  16. Giljohann, D.A., Seferos, D.S., Daniel, W.L., Massich, M.D., Patel, P.C., Mirkin, C.A.: Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49(19), 3280–3294 (2010)

    Article  Google Scholar 

  17. Darcy, H.: The flow of fluids through porous media. Mc-Graw Hill, NewYork, NY, USA (1937)

    Google Scholar 

  18. Korchevskii, E.M., Marochnik, L.S.: Magneto-hydrodynamic version of movement of blood. Biophysics 10(2), 411–414 (1965)

    Google Scholar 

  19. Sud, V.K., Suri, P.K., Mishra, R.K.: Effect of magnetic field on oscillating blood flow in arteries. Stud. Biophys. 46(3), 163–171 (1974)

    Google Scholar 

  20. Hayat, T., Khan, M., Ayub, M.: Some analytical solutions for second grade fluid flows for cylindrical geometries. Math. Comput. Model. 43(1–2), 16–29 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hatami, M., Hatami, J., Ganji, D.D.: Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput. Methods Programs Biomed. 113(2), 632–641 (2014)

    Article  Google Scholar 

  22. Sheikholeslami, M., Gorji-Bandpy, M., Soleimani, S.: Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Int. Commun. Heat Mass Transf. 47, 73–81 (2013)

    Article  Google Scholar 

  23. Yadav, D., Agrawal, G.S., Bhargava, R.: Thermal instability of rotating nanofluid layer. Int. J. Eng. Sci. 49(11), 1171–1184 (2011)

    Article  MathSciNet  Google Scholar 

  24. Aziz, A., Aziz, T.: MHD flow of a third grade fluid in a porous half space with plate suction or injection: an analytical approach. Appl. Math. Comput. 218(21), 10443–10453 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Asghar, S., Hanif, K., Hayat, T., Khalique, C.M.: MHD non-Newtonian flow due to non-coaxial rotations of an accelerated disk and a fluid at infinity. Commun. Nonlinear Sci. Numer. Simul. 12(4), 465–485 (2007)

    Article  MathSciNet  Google Scholar 

  26. Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56(3), 191–252 (1974)

    Article  MathSciNet  Google Scholar 

  27. Dunn, J.E., Rajagopal, K.R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33(5), 689–729 (1995)

    Article  MathSciNet  Google Scholar 

  28. Ellahi, R., Raza, M., Vafai, K.: Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math. Comput. Model. 55(7–8), 1876–1891 (2012)

    Article  MathSciNet  Google Scholar 

  29. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Abraham, F., Behr, M., Heinkenschloss, M.: Shape optimization in steady blood flow: a numerical study of non-Newtonian effects. Comput. Methods Biomech. Biomed. Eng. 8(2), 127–137 (2005)

    Article  Google Scholar 

  31. Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular mathematics: modeling and simulation of the circulatory system, vol. 1. Springer Science & Business Media (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubey, A., Vasu, B. (2020). Finite Element Analysis of MHD Blood Flow in Stenosed Coronary Artery with the Suspension of Nanoparticles. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_17

Download citation

Publish with us

Policies and ethics