Skip to main content

Use of Different Agronomic Practices to Minimize Ozone Injury in Plants: A Step Toward Sustainable Agriculture

  • Chapter
  • First Online:
New Frontiers in Stress Management for Durable Agriculture

Abstract

The increasing concentration of tropospheric O3 and its serious consequences on global crop production had been ratified since long. In addition, several studies done during the last few decades have clearly indicated the significant influences of climate change variables on the in-situ photochemical production of O3 in the troposphere. Along with the negative effects of O3 on agricultural productivity, the ever increasing global demand for food crops driven by rising world population have intensified the already existing problem of global food security. The multifarious setup related to O3 formation in the troposphere makes it difficult to control the increasing concentration of O3 in the troposphere. Therefore the demand of the present time is to develop certain strategies effective in mitigating the O3 induced yield reductions. Adoption of different agronomic practices like nutrient amendments in soil and CO2 fertilization have proved to be effective in sustaining the agricultural production that is under threat due to increasing O3 concentration. The deleterious effects of O3 on plants can be attributed to its oxidizing nature which leads to the enhanced production of reactive oxygen species (ROS) in plants. Nutrient amendments help in repairing O3 induced damage by regulating the plant antioxidant pool for an efficient scavenging of O3-generated ROS. In addition, it also increase the photosynthetic efficiency, mountain the activity and concentration of RuBisCO, and increase membrane stability thus providing more protection chloroplast structures. Elevated CO2 helps in mitigating wide range of abiotic stress in plants by providing additional carbon. It has been suggested that elevated CO2 helps in detoxifying O3 induced accumulated ROS in plants. These strategies aimed at targeting the crop loss reductions due to O3 and can be used as effective tools for sustainable agriculture in near future. The present chapter throws light on the effectiveness of a few O3 mitigating strategies using different agronomic practices and their impacts on agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors R, Brosche M, Kollist H, Kangasjärvi J (2009) Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 58:1–12. https://doi.org/10.1111/j.1365-313X.2008.03756.x

    Article  PubMed  Google Scholar 

  • Ainsworth EA (2016) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661. https://doi.org/10.1146/Annurev-Arplant-042110-103829

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897. https://doi.org/10.1111/tpj.13298

    Article  CAS  PubMed  Google Scholar 

  • Aunan K, Berntsen TK, Seip HM (2000) Surface ozone in China and its possible impact on agricultural crop yields. AMBIO J Hum Environ. https://doi.org/10.1639/0044-7447(2000)029[0294:SOICAI]2.0.CO;2

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309

    Article  CAS  Google Scholar 

  • Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581

    PubMed  Google Scholar 

  • Binkley D, Högberg P (2016) Tamm Review: revisiting the influence of nitrogen deposition on Swedish forests. For Ecol Manag 368:222–239

    Article  Google Scholar 

  • Brauer M, Freedman G, Frostad J et al (2016) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50:79–88

    Article  CAS  PubMed  Google Scholar 

  • Broberg MC, Feng Z, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality—a summary. Environ Pollut 197:203–213. https://doi.org/10.1016/j.envpol.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  • Cardoso-Vilhena J, Balaguer L, Eamus D, Ollerenshaw J, Barnes J (2004) Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2. J Exp Bot 55(397):771–781

    Article  CAS  PubMed  Google Scholar 

  • Chuwah C, van Noije T, van Vuuren DP, Stehfest E, Hazeleger W (2015) Global impacts of surface ozone changes on crop yields and land use. Atmos Environ 106:11–23

    Article  CAS  Google Scholar 

  • Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463(7279):344–348

    Article  CAS  PubMed  Google Scholar 

  • Cooper OR, Parrish D, Ziemke J et al (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elem Sci Anth 2:000029

    Article  Google Scholar 

  • Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C et al (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plant 157:69–84

    Article  CAS  PubMed  Google Scholar 

  • Danh NT, Huy LH, Oanh NTK (2016) Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. Sci Total Environ 566–567:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Degener JF (2015) Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany. Front Environ Sci 3:48

    Article  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798

    Article  PubMed  Google Scholar 

  • Doherty RM (2015) Atmospheric chemistry: ozone pollution from near and far. Nat Geosci 8(9):664

    Article  CAS  Google Scholar 

  • Dumont J, Spicher F, Montpied P, Dizengremel P, Jolivet Y, Le Thiec D (2012) Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes. Env Pollut (Barking, Essex: 1987) 173C:85–96. https://doi.org/10.1016/j.envpol.2012.09.026

  • Emberson LD, Büker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh NTK, Quadir QF, Wahid A (2009) A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos Environ 43:1945–1953. https://doi.org/10.1016/j.atmosenv.2009.01.005

    Article  CAS  Google Scholar 

  • Emberson LD, Pleijel H, Ainsworth EA, van den Berg M, Ren W, Osborne S et al (2018) Ozone effects on crops and consideration in crop models. Eur J Agron 100:19–34. https://doi.org/10.1016/j.eja.2018.06.002

    Article  CAS  Google Scholar 

  • Fares S, McKay M, Holzinger R, Goldstein AH (2010) Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes: evidence from long-term continuous measurements. Agric For Meteorol 150(3):420–431

    Article  Google Scholar 

  • Feng ZZ, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  • Feng Z, Liu X, Zhang F (2015) Air pollution effects on food security in China: taking ozone as an example. Front Agric Sci Eng 2:152–158. https://doi.org/10.15302/J-FASE-2015067

    Article  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18. https://doi.org/10.1104/pp.110.167569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grantz DA, Vu HB (2012) Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3 concentrations. J Exp Bot 63(11):4303–4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunhage L, Pleijel H, Mills G, Bender J, Danielsson H, Lehmann Y, Castell JF, Bethenod O (2012) Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. Environ Pollut 165:147–157. https://doi.org/10.1016/j.envpol.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y, Liu X, Ren Q, Zhu-Salzman K, Ge F (2013) Elevated CO2 modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil. PLoS One 8(12):e81373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hager HA, Ryan GD, Kovacs HM, Newman JA (2016) Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecol 16:28–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Wong J, Su T, Beatty PH, Good AG (2016) Identification of nitrogen use efficiency genes in barley: searching for QTLs controlling complex physiological traits. Front Plant Sci 7:1587. https://doi.org/10.3389/fpls.2016.01587

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmens H, Hayes F, Sharps K, Mill G, Calatayud V (2017) Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads. J Plant Physiol 211:42–52

    Article  CAS  PubMed  Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155:453–463. https://doi.org/10.1016/j.envpol.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655

    Article  CAS  PubMed  Google Scholar 

  • Högy P, Brunnbauer M, Koehler P, Schwadorf K, Breuer J, Franzaring J, Zhunusbayeva D, Fangmeier A (2013) Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment. Environ Exp Bot 88:11–18

    Article  CAS  Google Scholar 

  • IFPRI (2017) 2016 Annual report. International Food Policy Research Institute (IFPRI), Washington, DC. https://doi.org/10.2499/9780896292628

    Book  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Bouschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of intergovermental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jablonski LM, Wang XZ, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156(1):9–26

    Article  Google Scholar 

  • Lal S, Venkataramani S, Naja M, Kuniyal JC, Mandal TK, Bhuyan PK et al (2017) Loss of crop yields in India due to surface ozone: an estimation based on a network of observations. Environ Sci Pollut Res Int 24:20972–20981. https://doi.org/10.1007/s11356-017-9729-3

    Article  CAS  PubMed  Google Scholar 

  • Lombardozzi D, Sparks J, Bonan G, Levis S (2012) Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169:651–659. https://doi.org/10.1007/s00442-011-2242-3

    Article  PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Chen FJ, Olokhnuud CL, Glass ADM, Tong YP, Zhang FS et al (2009) Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency. J Plant Nutr Soil Sci 172:230–236. https://doi.org/10.1002/jpln.200800028

    Article  CAS  Google Scholar 

  • Liu Z, Chen W, Fu W, He X, Fu S, Lu T (2016) Effects of elevated CO2 and O3 on leaf area, gas exchange and starch contents in Chinese pine (Pinus tabulaeformis Carr) in northern China. Bangladesh J Bot 44(5):917–923

    Google Scholar 

  • Lu XK, Mo JM, Franks G, Zhou G, Fang Y (2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Glob Chang Biol 16:2688–2700

    Article  Google Scholar 

  • Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJA, Mogul RT, Mabilangan AE, Danila FR, Hibberd JM, Quick WP (2011) Strategies for engineering a two-celled C4 photosynthetic pathway in to rice. J Exp Bot 62:3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    Article  CAS  PubMed  Google Scholar 

  • Kumar M (2016) Impact of climate change on crop yield and role of model for achieving food security. Environ Monit Assess 188:465–478

    Article  CAS  PubMed  Google Scholar 

  • Marzuoli R, Monga R, Finco A, Chiesa M, Gerosa G (2018) Increased nitrogen wet deposition triggers negative effects of ozone on the biomass production of Carpinus betulus L. young trees. Environ Exp Bot 152:128–136

    Article  CAS  Google Scholar 

  • Maurer S, Matyssek R (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). Trees 12(1):11–20

    Article  Google Scholar 

  • Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG, Xu X (2018) Tropospheric ozone assessment report: present day tropospheric ozone distribution and trends relevant to vegetation. Elementa 6:47

    Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crop Res 145:21–32

    Article  Google Scholar 

  • Mishra AK, Agrawal SB (2014) Cultivar specific response of CO2 fertilization on two tropical Mung bean (Vigna radiata L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. J Agron Crop Sci 200(4):273–289

    Article  CAS  Google Scholar 

  • Monks PS, Archibald TA, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams ML (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973

    Article  CAS  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  PubMed  Google Scholar 

  • Mu X, Chen F, Wu Q, Chen Q, Wang J, Yuan L, Mi G (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63:55–61

    Article  CAS  Google Scholar 

  • Osborne SA, Mills G, Hayes F, Ainsworth EA, Büker P, Emberson L (2016) Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose–response data. Glob Chang Biol 22:3097–3111. https://doi.org/10.1111/gcb.13318

    Article  PubMed  Google Scholar 

  • Pandey AK, Majumder B, Saari SK, Soppela SK, Pandey V, Oksanen E (2014) Differences in responses of two mustard cultivars to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    Google Scholar 

  • Pandey AK, Ghosh A, Agrawal SB (2018) Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: growth, gas-exchange, antioxidant status, grain yield and quality. Ecotoxicol Environ Saf 158:59–68

    Google Scholar 

  • Peñuelas J et al (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Commun 4:2934

    Article  CAS  Google Scholar 

  • Phothi R, Umponstira C, Sarin C, Siriwong W, Nabheerong N (2016) Combining effects of ozone and carbon dioxide application on photosynthesis of Thai jasmine rice (Oryza sativa L.) cultivar Khao Dawk Mali 105. Aust J Crop Sci 10(4):591–597. https://doi.org/10.21475/ajcs.2016.10.04.p7595x. ISSN:1835-2707

    Article  CAS  Google Scholar 

  • Pleijel H, Danielsson H, Simpson D, Mills G (2014) Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat. Biogeosciences 11:4521–4528. https://doi.org/10.5194/bg-11-4521-2014

    Article  CAS  Google Scholar 

  • Pleijel H, Broberg MC, Uddling J, Mills G (2018) Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci Total Environ 613–614:687–692. https://doi.org/10.1016/j.scitotenv.2017.09.111

    Article  CAS  PubMed  Google Scholar 

  • Podda A et al (2019) Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone? Sci Total Environ 657:340–350

    Article  CAS  PubMed  Google Scholar 

  • Roy SD, Beig G, Ghude SD (2009) Exposure-plant response of ambient ozone over the tropical Indian region. Atmos Chem Phys 9:5253–5260

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  • Shang B, Feng Z, Li P, Calatayud V (2018) Elevated ozone affects C, N, and P ecological stoichiometry and nutrient resorption of two poplar clones. Environ Pollut 234:136–144

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037, 26 p. https://doi.org/10.1155/2012/217037

  • Shi GY, Yang LX, Wang YX, Kobayashi K, Zhu JG, Tang HY, Pan ST, Chen T, Liu G, Wang YL (2009) Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agric Ecosyst Environ 131:178–184

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2011) Cultivar-Specific Response of Soybean (Glycine max L.) to ambient and elevated concentrations of ozone under open top chambers. Water Air Soil Pollut 217:283–302. https://doi.org/10.1007/s11270-010-0586-7

    Article  CAS  Google Scholar 

  • Singh S, Agrawal M, Agrawal SB, Emberson L, Bueker P (2010) Use of ethylenediurea for assessing the impact of ozone on mung bean plants at a rural site in a dry tropical region of India. Int J Environ Waste Manag 5:125–135

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2015) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosyst Environ 199:26–33. https://doi.org/10.1016/j.agee.2014.07.021

    Article  CAS  Google Scholar 

  • Tai APK, Val Martin M, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nat Clim Chang 4:817–821

    Article  CAS  Google Scholar 

  • Talhelm AF, Pregitzer KS, Burton AJ (2011) No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests. Ecol Appl 21:2413–2424

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S (2017) Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants. Environ Sci Pollut Res 24:14019–14039

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2011) Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions. Environ Monit Assess 175(1–4):443–454

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Agarwal M (2018) Effect of ozone on physiological and biochemical processes of plants. In: Tropospheric ozone and its impacts on crop plants. Springer, Cham, pp 65–113

    Google Scholar 

  • Tiwari S, Grote R, Churkina G, Butler T (2016) Ozone damage, detoxification and the role of isoprenoids–new impetus for integrated models. Funct Plant Biol 43(4):324–336

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UNECE (2016) Towards cleaner air. Scientific Assessment Report 2016. EMEP Steer. Body Work. Gr. Eff. Conv. Long-range transbound. Air Pollut 50. https://doi.org/10.1016/S0140-6736(54)91963-7

  • United Nations Sustainable Development Group (UNSDG) (2016) https://unsdg.un.org/results-report-2016/

  • van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604e618. https://doi.org/10.1016/J.Atmosenv.2008.10.033

    Article  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38(26):4383–4402. https://doi.org/10.1016/j.atmosenv.2004.03.067

    Article  CAS  Google Scholar 

  • Wang X, Zhang Q, Zheng F, Zheng Q, Yao F, Chen Z, Zhang W, Hou P, Feng Z, Song W, Feng Z, Lu F (2012) Effect of elevated ozone concentration on winter wheat and rice yields in the Yangtze River Delta, China. Environ Pollut 171:118–125

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2012) Risk assessment of ozone impact on Fagus crenata in Japan: consideration of atmospheric nitrogen deposition. Eur J For Res 131:475–484

    Article  CAS  Google Scholar 

  • Wilkinson S, Mill G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63(2):527–536. https://doi.org/10.1093/jxb/err317

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang Y, Zhou G (2015) Responses and adaptation of photosynthesis, respiration, antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci 6:701–717

    PubMed  PubMed Central  Google Scholar 

  • Yi F, Jiang F, Zhong F, Zhao X, Ding A (2016) The impact of surface air pollution on winter wheat productivity in China—an economical approach. Environ Pollut 208:326–335

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Sheng H, Liu Y, Wang Y, Wang Y, Kang H, Fan X, Sha L, Yuan S, Zhou Y (2017) High nitrogen supply induces physiological responsiveness to long photoperiod in Barley. Front Plant Sci 8:569

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hoshika Y, Carrari E, Paoletti E (2018) Ozone risk assessment is affected by nutrient availability: evidence from a simulation experiment under free air controlled exposure (FACE). Environ Pollut 238:812–822

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Feng Z, Sun T, Liu X, Tang H, Zhu J et al (2011) Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Chang Biol 17(8):2697–2706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, A.K., Tiwari, S. (2020). Use of Different Agronomic Practices to Minimize Ozone Injury in Plants: A Step Toward Sustainable Agriculture. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_13

Download citation

Publish with us

Policies and ethics