Skip to main content

Bionanotechnology in Medicine

  • Chapter
  • First Online:

Abstract

It should be recalled that the creation, control, and use of nano-scale structures, devices, and systems is the domain of nanotechnology and bionanotechnology deals with the diagnostic, therapeutic, and clinical applications of nanotechnology in biomedical, bioscience, and any subunit of health care for that matter. A key stage in health care is diagnosis as timely diagnosis can lead to the higher effectiveness of disease treatment, thus giving more positive outcomes and curtailed total costs. New technologies are necessary to speed the diagnostic processes and help the clinicians and scientists in the initiation of targeted treatments and in the monitoring of treatment responses. An important objective of medicine now is to exploit initial accomplishments and combining them with available technologies to identify the earliest signatures of fatal conditions, allowing us to provide immediate and specific interventions and monitor the condition progresses before chronic inflammation and malignancy happen. The improvement of diagnostic technologies can be supported by bionanotechnology, as a result of unique mechanical, chemical, electrical, and optical properties at nano-scale. Immediate benefits to the users can be presented by the development and use of tools in diagnostic field. The technologies of 1–100 nm size can assist in sensing or visualizing interactions with receptors, specific organelles, cytoskeletons, and nuclear components within the cells. They are expected to be able to migrate into monitoring the health condition by means of non-invasive methods in vivo. The growth in nanotechnology assists us in differentiating between abnormal and normal cells and detecting and quantifying minor amounts of signature molecules produced by the cells [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Papazoglou ES, Parthasarathy A. Bionanotechnology. Morgan & Claypool; 2007.

    Google Scholar 

  2. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30. https://doi.org/10.1096/fj.04-2747rev.

    Article  Google Scholar 

  3. Hayes ME, et al. Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Therapy. 2005; 13: 646. doi:https://doi.org/10.1038/sj.gt.3302699.

    Article  Google Scholar 

  4. Cloninger MJ. Biological applications of dendrimers. Curr Opin Chem Biol. 2002;6:742–8. https://doi.org/10.1016/S1367-5931(02)00400-3.

    Article  Google Scholar 

  5. Vercoutere W, et al. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol. 2001; 19, 248, doi:https://doi.org/10.1038/85696.

    Article  Google Scholar 

  6. Wang S, Zhao Z, Haque F, Guo P. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis. Curr Opin Biotechnol. 2018;51:80–9. https://doi.org/10.1016/j.copbio.2017.11.006.

    Article  Google Scholar 

  7. Thomas H, et al. Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerg Infect Dis J. 2016; 22, 331, doi:https://doi.org/10.3201/eid2202.151796.

  8. Ashton PM, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2014; 33: 296. doi:https://doi.org/10.1038/nbt.3103.

    Article  Google Scholar 

  9. Garalde DR, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018; 15, 201. doi:https://doi.org/10.1038/nmeth.4577.

    Article  Google Scholar 

  10. Wongsurawat T, et al. Rapid sequencing of multiple RNA viruses in their native form. Front Microbiol. 2019; 10: 260. doi:https://doi.org/10.3389/fmicb.2019.00260.

  11. Chen M, McDaniel JR, Mackay JA, Chilkoti A. Nanoscale self-assembly for delivery of therapeutics and imaging agents. Technol Innov. 2011;13:5–25. https://doi.org/10.3727/194982411X13003853539948.

    Article  Google Scholar 

  12. Allen M, et al. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Mgn Reson Med. 2005; 54: 807–12. doi:https://doi.org/10.1002/mrm.20614.

    Article  Google Scholar 

  13. Bhushan B. Encyclopedia of nanotechnology, 2012.

    Google Scholar 

  14. McLoughlin KS. Microarrays for pathogen detection and analysis. Brief Funct Genomics. 2011;10:342–53. https://doi.org/10.1093/bfgp/elr027.

    Article  Google Scholar 

  15. Chen H, Li J. In Jang B. Rampal (ed) Microarrays: volume 1: synthesis methods. Humana Press, 2007. 411–436.

    Google Scholar 

  16. Huang D, Patel K, Perez-Garrido S, Marshall JF, Palma M. DNA origami Nanoarrays for multivalent investigations of Cancer cell spreading with Nanoscale spatial resolution and single-molecule control. ACS Nano. 2019;13:728–36. https://doi.org/10.1021/acsnano.8b08010.

    Article  Google Scholar 

  17. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001;19:631–5. https://doi.org/10.1038/90228.

    Article  Google Scholar 

  18. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4:435–46. https://doi.org/10.1038/nmat1390.

    Article  ADS  Google Scholar 

  19. Mitchell P. Turning the spotlight on cellular imaging. Nat Biotechnol. 2001;19:1013–7. https://doi.org/10.1038/nbt1101-1013.

    Article  Google Scholar 

  20. Michalet X, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307, 538–544. doi:https://doi.org/10.1126/science.1104274.

    Article  ADS  Google Scholar 

  21. Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004;14:497–504. https://doi.org/10.1016/j.tcb.2004.07.012.

    Article  Google Scholar 

  22. Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26. https://doi.org/10.1038/nbt1171.

    Article  Google Scholar 

  23. Yang H, Kao W. J. Dendrimers for pharmaceutical and biomedical applications. Journal of biomaterials science. Polymer Edition. 2006;17:3–19. https://doi.org/10.1163/156856206774879171.

    Article  Google Scholar 

  24. Yan G-P, Hu B, Liu M-L, Li L-Y. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents. J Pharm Pharmacol. 2005;57:351–7. https://doi.org/10.1211/0022357055506.

    Article  Google Scholar 

  25. Chen Z, et al. The advances of carbon nanotubes in Cancer diagnostics and therapeutics. J Nanomater. 2017, 2017:13. https://doi.org/10.1155/2017/3418932.

    ADS  Google Scholar 

  26. Avti PK, et al. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy. PloS One. 2012; 7, e35064, doi:https://doi.org/10.1371/journal.pone.0035064.

    Article  ADS  Google Scholar 

  27. Perez JM, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chem Bio Chem. 2004;5:261–4. https://doi.org/10.1002/cbic.200300730.

    Article  Google Scholar 

  28. Bogdanov A, Matuszewski L, Bremer C, Petrovsky A, Weissleder R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging. 2002;1:153. https://doi.org/10.1162/15353500200200001.

    Article  Google Scholar 

  29. Anzai Y. Superparamagnetic Iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging. 2004;15:103–11. https://doi.org/10.1097/01.rmr.0000130602.65243.87.

    Article  Google Scholar 

  30. Harisinghani MG, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003; 348: 2491–9. doi:https://doi.org/10.1056/NEJMoa022749.

    Article  Google Scholar 

  31. Lee H, et al. High-performance nanogap electrode-based impedimetric sensor for direct DNA assays. Biosens Bioelectr. 2018; 118: 153–9, doi:https://doi.org/10.1016/j.bios.2018.07.050.

    Article  Google Scholar 

  32. Hartung G, et al. Phase I trial of methotrexate-albumin in a weekly intravenous bolus regimen in Cancer patients. Clin Cancer Res. 1999;5:753–9.

    Google Scholar 

  33. Kim J-G, et al. Development and characterization of a glucagon-like peptide 1-albumin conjugate. the ability to activate the glucagon-like peptide 1 receptor in vivo. 2003; 52:751–9. doi:https://doi.org/10.2337/diabetes.52.3.751.

    Article  Google Scholar 

  34. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–83. https://doi.org/10.1016/j.jconrel.2008.05.010.

    Article  Google Scholar 

  35. Mao W, et al. EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 2004; 64: 781–8. doi:https://doi.org/10.1158/0008-5472.can-03-1047.

    Article  Google Scholar 

  36. Cattel L, Ceruti M, Dosio F. From conventional to Stealth liposomes: a new frontier in Cancer chemotherapy. J Chemother. 2004;16:94–7. https://doi.org/10.1179/joc.2004.16.Supplement-1.94.

    Article  Google Scholar 

  37. Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004; 15: 440–9. doi:https://doi.org/10.1093/annonc/mdh097.

    Article  Google Scholar 

  38. Mastrobattista E, Koning GA, Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev. 1999;40:103–27. https://doi.org/10.1016/S0169-409X(99)00043-5.

    Article  Google Scholar 

  39. Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8:323–41. https://doi.org/10.1146/annurev.bioeng.8.061505.095838.

    Article  Google Scholar 

  40. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60. https://doi.org/10.1002/adma.200501612.

    Article  Google Scholar 

  41. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66. https://doi.org/10.1016/j.addr.2007.05.012.

    Article  Google Scholar 

  42. Choucha Snouber L, et al. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol Sci. 2012; 132: 8–20. doi:https://doi.org/10.1093/toxsci/kfs230.

    Article  Google Scholar 

  43. Hirsch LR, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A. 2003; 100: 13549–54. doi:https://doi.org/10.1073/pnas.2232479100.

    Article  ADS  Google Scholar 

  44. Saito R, et al. Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol. 2005; 196: 381–9. doi:10.1016/j.expneurol.2005.08.016.

    Article  Google Scholar 

  45. Tsourkas A, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem. 2005; 16: 576–81. doi:https://doi.org/10.1021/bc050002e.

    Article  Google Scholar 

  46. Stendahl J. C. & Sinusas, A. J. nanoparticles for cardiovascular imaging and therapeutic delivery, part 1: compositions and features. Journal of nuclear medicine: official publication. Society of Nuclear Medicine. 2015;56:1469–75. https://doi.org/10.2967/jnumed.115.160994.

    Article  Google Scholar 

  47. Jeong W-J, et al. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Convergence. 2018; 5: 38. doi:https://doi.org/10.1186/s40580-018-0170-1.

  48. Fan Z, et al. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun. 2018; 9: 2605. doi:https://doi.org/10.1038/s41467-018-04763-y.

  49. Fan Z, Sun L, Huang Y, Wang Y, Zhang M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat Nanotechnol. 2016;11:388–94. https://doi.org/10.1038/nnano.2015.312.

    Article  ADS  Google Scholar 

  50. Zhu J, Fu F, Xiong Z, Shen M, Shi X. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surf B: Biointerfaces. 2015;133:36–42. https://doi.org/10.1016/j.colsurfb.2015.05.040.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, YC., Moon, JY. (2020). Bionanotechnology in Medicine. In: Introduction to Bionanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1293-3_8

Download citation

Publish with us

Policies and ethics