Skip to main content

Biocompatible Thermoresponsive Polymers: Property and Synthesis

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Abstract

Thermoresponsive polymers are responsive to slight changes in temperatures. In many cases, particularly with N-isopropylacrylamide group as repeating unit, the temperature at which the change takes place falls in physiological range. Hence, such polymers can be used for biological applications, even though biocompatibility is major issue in many cases. There is no universal solution to this; however, copolymerization is one strategy to address the issue. Choice of polymerization process also emerges as critical standpoint in several cases. In this chapter, such issues have been discussed with special emphasis on lower critical solution temperature (LCST) of most polymers. In certain cases, polymers with upper critical solution temperature (UCST) have been described briefly. Finally, the description along with schematic representation of preparation of various biocompatible thermoresponsive polymers using various controlled living radical polymerization techniques has been presented with references (total 86 references).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PVCa:

poly(n-vinyl caprolactam)

PMVE:

poly(methyl vinyl ether)

PEtOx:

poly(n-ethyl oxazoline)

CLRP:

controlled living radical polymerization

ATRP:

atom transfer radical polymerization

RAFT:

reversible addition-fragmentation chain transfer polymerization

NMP:

nitroxide mediated polymerization

LCST:

lower critical solution temperature

UCST:

upper critical solution temperature

PDI:

polydispersity index

NIPAM/NIPAAm/NIPAm/NIPAAM :

N-isopropylacrylamide

PNIPAM/PNIPAAm/ PNIPAm/PNIPAAM :

poly(n-isopropylacrylamide)

PLL:

poly(l-lysine)

VP:

vinyl pyridine

PAM:

polyacrylamide

PHB:

poly[(r)-3-hydroxybutyrate]

HMTETA:

hexamethyltriethylenetetramine

PS:

polystyrene

EBiB:

ethyl 2-bromoisobutyrate

DCM:

dichloromethane

DMF:

n,n-dimethylformamide

PEG:

polyethylene glycol

PCL:

polycaprolactone

PCLDMA:

polycaprolactonedimethacrylate

Me6TREN:

tris [2-(dimethylamino)ethyl]amine

DMSO:

dimethyl sulfoxide

PPO:

poly(propylene oxide)

MPC:

2-methacryloyloxyethylphosphorylcholine

PMPC:

poly(2-methacryloyloxyethylphosphorylcholine)

bpy:

2,2’-bipyridine

Me4Cyclam:

1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane

TsOH:

ρ-toluenesulfonic acid

DEA:

2-(1,3-dioxan-2-yloxy)ethyl acrylate

DMDEA:

2-(5,5-dimethyl-1,3-dioxan-2-yloxy) ethyl acrylate

OEGA:

oligo(ethylene glycol) acrylate

DE-ATRP:

deactivation enhanced atom transfer radical polymerization

PEGMEMA:

poly(ethylene glycol) methyl ether methylacrylate

PPGMA:

poly(propylene glycol) methacrylate

EGDMA:

ethylene glycol dimethacrylate

poly(A-Pro-OMe):

poly(n-acryloyl-l-prolinemethylester)

BDB:

benzyl dithiobenzoate

CTA:

chain transfer agent

DMA:

n,n-dimethylacrylamide

AIBN:

azobisisobutyronitrile

ADMO:

(n-acryloyl-2,2-dimethyl-1,3-oxazolidine)

PADMO:

poly(n-acryloyl-2,2-dimethyl-1,3-oxazolidine)

HEMA:

2-hydroxylethyl methacrylate

BSPA:

benzylsulfanylthiocarbonylsulfanylpropionic acid

PAGA:

poly(acryloyl glucosamine)

EIPPMMA:

4-(1-ethyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl) phenyl methacrylate]

PVPhol:

poly(vinylphenol)

FITC:

fluorescein isothiocyanate

PDS:

pyridylsulfide

DTT:

dithiothreitol

OEG:

oligoethyleneglycol

VCL:

vinylcaprolactam

AA:

acrylic acid

DODAB:

dimethyldioctadecylammonium bromide

DBTTC:

dibenzyltrithiocarbonate

EGDMA:

ethyleneglycoldimethacrylate

MBA:

N,N’-methylenebisacrylamide

PHMPA:

poly((n-2-hydroxyproply)-methacrylamide)

P(OEG-A):

poly(oligoethylene glycol methyl ether acrylate)

P(OEG-MA):

poly-(oligoethylene glycol methyl ether methacrylate)

CDTB:

cyanopentanoic acid dithiobenzoate

BSPA:

3-(benzyl sulfanylthiocarbonylsulfanyl)-propionic acid

CDB:

cumyldithiobenzoate

PPEGMAxTTC:

poly[poly(ethylene glycol) methyl ether methacrylate]-trithiocarbonate

DT:

dithioester

MEO2MA:

poly(2-(2-methoxyethoxy)ethyl methacrylate

PVPip:

poly(n-vinylpiperidone)

VAc:

vinylacetate

LDH:

lactate dehydrogenase

PNASME:

poly(n-acryloylsarcosine methyl ester)

C2NVP:

3-ethyl-1-vinyl-2-pyrrolidone

NVP:

n-vinylpyrrolidone

MHEX:

s-(1-methyl-4-hydroxyethyl acetate) o-ethyl xanthate

Mw:

molecular weight

MADIX:

Macromolecular design by interchange of xanthate

MeO2VAc:

oligo (ethylene glycol) vinyl acetate

ABCN:

1,1’-azobis-(cyclohexanocarbonitrile)

BMDO:

5,6-benzo-2-methylene-1,3-dioxepane

MDO:

2-methylene-1,3-dioxepane

TEMPO:

(2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl

MePEGMA:

poly(ethylene glycol) methyl ether methacrylate

AN:

acrylonitrile

HEA:

2-hydroxyethyl acrylate

FRP:

free radical polymerization

DEGEA:

diethylene glycol ethyl ether acrylate

DHHA/PDHHA:

dihydroxyhexyl acrylate/poly(dihydroxyhexyl acrylate)

MA:

methyl acrylate

OEGMA:

oligo(ethylene glycol) methyl ether methacrylate

POEGMA:

poly[oligo(ethylene glycol) methyl ether methacrylate]

OEGMEAs:

oligo(ethylene glycol) methyl ether amines

CPADB:

4-cyano-4-((phenylcarbonothioyl)thio)pentanoic acid

PFP(M)A:

pentafluorophenyl(meth)acrylate

PFPA:

pentafluorophenyl acrylate

MEO2MAM:

diethylene glycol methacrylamide

MEO2AM:

diethylene glycol acrylamide

mPEG:

methoxy poly(ethylene glycol)

AAm/AM:

acrylamide

APEG:

α-acryloyl-ω-methoxypoly(ethyleneglycol)

CMC:

critical micelle concentration

DOX:

doxorubicin

PVP:

polyvinylpyrrolidone

CMPC:

cyanomethyl methyl(4-pyridyl)carbamodithioate

LbL:

layer by layer

OEtOxA:

oligo(2-ethyl-2-oxazoline)acrylate

TA:

tannic acid

CROP:

cationic ring-opening polymerization

P[VBTP][Cl]:

poly(triphenyl-4-vinylbenzylphosphonium chloride)

P[VBuIm][Br]:

poly(3-n-butyl-1-vinylimidazolium bromide)

P2VP:

poly (2-vinylpyridine)

PHEA:

poly(2-hydroxyethyl acrylate)

PEA:

poly(ethyl acrylate)

PEGMA:

poly(ethylene glycol) methacrylate

Hex:

Hexylamine

References

  1. Teotia AK, Sami H, Kumar A (2015) Thermo-responsive polymers: structure and design of smart materials. In: Zhang Z (eds) Switchable and responsive surfaces and materials for biomedical applications. Woodhead Publishing, pp 3–43. https://doi.org/10.1016/c2013-0-16356-8

  2. James HP, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharmacol Sin B 4:120–127. https://doi.org/10.1016/j.apsb.2014.02.005

    Article  Google Scholar 

  3. Ilmain F, Tanaka T, Kokufuta E (1991) Volume transition in a gel driven by hydrogen bonding. Nature 349:400–401. https://doi.org/10.1038/349400a0

    Article  CAS  Google Scholar 

  4. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242. https://doi.org/10.3390/polym3031215

    Article  CAS  Google Scholar 

  5. Zhu YC, Batchelor R, Lowe AB, Roth PJ (2016) Design of thermoresponsive polymers with aqueous LCST, UCST, or both: modification of a reactive poly(2-vinyl-4,4-dimethylazIactone) Scaffold. Macromolecules 49:672–680. https://doi.org/10.1021/acs.macromol.5b02056

    Article  CAS  Google Scholar 

  6. Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533. https://doi.org/10.1021/jp015514e

    Article  CAS  Google Scholar 

  7. Aguilar MR, San Roman J (2014) Introduction to smart polymers and their applications. In: Aguilar MR, San Roman J (eds) Smart polymers and their applications. Woodhead Publishing, pp 1–11. https://doi.org/10.1533/9780857097026.1

  8. Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C, Chilkoti A, Ding Z, Dong L, Fong R (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586. https://doi.org/10.1002/1097-4636(20001215)52:4%3c577:aid-jbm1%3e3.0.co;2-5

    Article  CAS  Google Scholar 

  9. Liu RX, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643. https://doi.org/10.1007/s00396-009-2028-x

    Article  CAS  Google Scholar 

  10. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500. https://doi.org/10.1021/ma00062a016

    Article  CAS  Google Scholar 

  11. Shimada N, Ino H, Maie K, Nakayama M, Kano A, Maruyama A (2011) Ureido-derivatized polymers based on both poly(allylurea) and poly(l-citrulline) exhibit UCST-type phase transition behavior under physiologically relevant conditions. Biomacromol 12:3418–3422. https://doi.org/10.1021/bm2010752

    Article  CAS  Google Scholar 

  12. Plamper FA, Schmalz A, Ballauff M, Muller AHE (2007) Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N, N-dimethylaminoethyl methacrylate). J Am Chem Soc 129:14538–14539. https://doi.org/10.1021/ja074720i

    Article  CAS  Google Scholar 

  13. Wu DC, Liu Y, He CB (2008) Thermal- and pH-responsive degradable polymers. Macromolecules 41:18–20. https://doi.org/10.1021/ma7024896

    Article  CAS  Google Scholar 

  14. Fujishige S, Kubota K, Ando I (1989) Phase-transition of aqueous-solutions of poly(N-Isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313. https://doi.org/10.1021/j100345a085

    Article  CAS  Google Scholar 

  15. Pentela N, Ayyappan VG, Krishnamurthy M, Boopathi AA, Rainu S, Sampath S, Mandal AB, Samanta D (2017) A comparative study of pH-responsive microcapsules from different nanocomposites. Green Mater 5:53–62. https://doi.org/10.1680/jgrma.16.00023

    Article  Google Scholar 

  16. Pentela N, Duraipandy N, Sainath N, Parandhaman T, Kiran MS, Das SK, Jaisankar SN, Samanta D (2018) Microcapsules from diverse polyfunctional materials: synergistic interactions for a sharp response to pH changes. New J Chem 42:8366–8373. https://doi.org/10.1039/C7NJ03744A

    Article  CAS  Google Scholar 

  17. Winnik FM (1990) Phase transition of aqueous poly-(N-isopropylacrylamide) solutions: a study by non-radiative energy transfer. Polymer 31:2125–2134. https://doi.org/10.1016/0032-3861(90)90085-D

    Article  CAS  Google Scholar 

  18. Wang XH, Wu C (1999) Light-scattering study of coil-to-globule transition of a poly(N-isopropylacrylamide) chain in deuterated water. Macromolecules 32:4299–4301. https://doi.org/10.1021/ma9902450

    Article  CAS  Google Scholar 

  19. Cao Y, Zhu XX, Luo JT, Liu HY (2007) Effects of substitution groups on the RAFT polymerization of N-Alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 40:6481–6488. https://doi.org/10.1021/ma0628230

    Article  CAS  Google Scholar 

  20. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A 2:1441–1455. https://doi.org/10.1080/10601326808051910

  21. Kobayashi M, Ishizone T, Nakahama S (2000) Synthesis of highly isotactic poly(N, N-diethylacrylamide) by anionic polymerization with grignard reagents and diethylzinc. J Polym Sci A 38:4677–4685. https://doi.org/10.1002/1099-0518(200012)38:1+%3c4677:AID-POLA70%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  22. Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F (2003) New thermo-responsive polymer materials based on poly (2-ethyl-2-oxazoline) segments. Polymer 44:2255–2261. https://doi.org/10.1016/s0032-3861(03)00139-3

    Article  CAS  Google Scholar 

  23. Jiang J, Tong X, Zhao Y (2005) A new design for light-breakable polymer micelles. J Am Chem Soc 127:8290–8291. https://doi.org/10.1021/ja0521019

    Article  CAS  Google Scholar 

  24. Zhao C, Zhuang X, He C, Chen X, Jing X (2008) Synthesis of novel thermo- and pH-responsive poly(l-lysine)-based copolymer and its micellization in water. Macromol Rapid Commun 29:1810–1816. https://doi.org/10.1002/marc.200800494

    Article  CAS  Google Scholar 

  25. Karir T, Sarma HD, Samuel G, Hassan PA, Padmanabhan D, Venkatesh M (2013) Preparation and evaluation of radioiodinated thermoresponsive polymer based on poly(N-isopropyl acrylamide) for radiotherapy. J Appl Polym Sci 130:860–868. https://doi.org/10.1002/app.39235

    Article  CAS  Google Scholar 

  26. Hong MC, Choi MC, Chang YW, Lee Y, Kim J, Rhee H (2012) Palladium nanoparticles on thermoresponsive hydrogels and their application as recyclable Suzuki-Miyaura coupling reaction catalysts in water. Adv Synth Catal 354:1257–1263. https://doi.org/10.1002/adsc.201100965

    Article  CAS  Google Scholar 

  27. Fan Y, Boulif N, Picchioni F (2018) Thermo-responsive starch-g-(PAM-co-PNIPAM): controlled synthesis and effect of molecular components on solution rheology. Polymers 10:92. https://doi.org/10.3390/polym10010092

    Article  CAS  Google Scholar 

  28. Sun S, Wu P (2011) Infrared spectroscopic insight into hydration behavior of poly(n-vinylcaprolactam) in water. J Phys Chem B 115:11609–11618. https://doi.org/10.1021/jp2071056

    Article  CAS  Google Scholar 

  29. Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856. https://doi.org/10.1039/C2PY00485B

    Article  CAS  Google Scholar 

  30. Jones MW, Gibson MI, Mantovanib G, Haddletona DM (2011) Tunable thermo-responsive polymer-protein conjugates via a combination of nucleophilic thiol-ene “click” and SET-LRP. Polym Chem 2:572–574. https://doi.org/10.1039/C0PY00329H

    Article  CAS  Google Scholar 

  31. Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54:613–630. https://doi.org/10.1016/s0169-409x(02)00041-8

    Article  CAS  Google Scholar 

  32. Enzenberg A, Laschewsky A, Boeffel C, Wischerhoff E (2016) Influence of the near molecular vicinity on the temperature regulated fluorescence response of poly(N-vinylcaprolactam). Polymers 8:109–129. https://doi.org/10.3390/polym8040109

    Article  CAS  Google Scholar 

  33. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly (N-vinylcaprolactam). Biomaterials 26:3055–3064. https://doi.org/10.1016/j.biomaterials.2004.09.008

    Article  CAS  Google Scholar 

  34. Chee CK, Rimmer S, Soutar I, Swanson L (2006) Fluorescence investigations of the conformational behaviour of poly(N-vinylcaprolactam). React Funct Polym 66:1–11. https://doi.org/10.1016/j.reactfunctpolym.2005.07.007

    Article  CAS  Google Scholar 

  35. Moerkerke R, Meeussen F, Koningsveld R, Berghmans H, Mondelaers W, Schacht E, Dušek K, Šolc K (1998) Phase transitions in swollen networks. 3. Swelling behavior of radiation cross-linked poly(vinyl methyl ether) in water. Macromolecules 31:2223–2229. https://doi.org/10.1021/ma971512+

    Article  CAS  Google Scholar 

  36. Zhang WZ, Chen XD, Luo WA, Yang J, Zhang MQ, Zhu FM (2009) Study of phase separation of poly(vinyl methyl ether) aqueous solutions with rayleigh scattering technique. Macromolecules 42:1720–1725. https://doi.org/10.1021/ma802671a

    Article  CAS  Google Scholar 

  37. Chiu TT (1986) Poly(2-ethy-2-oxazoline): a new water-and organic soluble adhesive. Water Soluble Polym 213:425–433. https://doi.org/10.1021/ba-1986-0213.ch023

    Article  CAS  Google Scholar 

  38. Chen CH, Wilson J, Chen W, Davis RM, Riffle JS (1994) A light-scattering study of poly (2-alkyl-2-oxazoline)s: effect of temperature and solvent type. Polymer 35:3587–3591. https://doi.org/10.1016/0032-3861(94)90532-0

    Article  CAS  Google Scholar 

  39. Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670. https://doi.org/10.1016/j.addr.2006.09.020

    Article  CAS  Google Scholar 

  40. Hoogenboom R, Schlaad H (2011) Bioinspired poly (2-oxazoline) s. Polymers 3:467–488. https://doi.org/10.3390/polym3010467

    Article  CAS  Google Scholar 

  41. Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, Sakurai Y (1994) Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N, N-dimethylacrylamide). Macromolecules 27:947–952. https://doi.org/10.1021/ma00082a010

    Article  CAS  Google Scholar 

  42. York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60:1018–1036. https://doi.org/10.1016/j.addr.2008.02.006

    Article  CAS  Google Scholar 

  43. Matyjaszewski K, Patten TE, Xia JH (1997) Controlled/“living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc 119:674–680. https://doi.org/10.1021/ja963361g

    Article  CAS  Google Scholar 

  44. Patten TE, Matyjaszewski K (1999) Copper(I)-catalyzed atom transfer radical polymerization. Acc Chem Res 32:895–903. https://doi.org/10.1021/ar9501434

    Article  CAS  Google Scholar 

  45. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990. https://doi.org/10.1021/cr940534g

    Article  CAS  Google Scholar 

  46. Mishra V, Kumar R (2012) Living radical polymerization: a review. J Sci Res 56:141–176

    Google Scholar 

  47. Arslan H (2012) Block and graft copolymerization by controlled/living radical polymerization methods. In: Gomes ADS (eds) Polymerization. InTechOpen,, pp 279–320. https://doi.org/10.5772/45970

  48. Haddleton DM, Crossman MC (1997) Synthesis of methacrylic multi-arm star copolymers by “arm-first” group transfer polymerisation. Macromol Chem Phys 198:871–881. https://doi.org/10.1002/macp.1997.021980317

    Article  CAS  Google Scholar 

  49. Matyjaszewski K (2005) Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog Polym Sci 30:858–875. https://doi.org/10.1016/j.progpolymsci.2005.06.004

    Article  CAS  Google Scholar 

  50. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146. https://doi.org/10.1016/j.progpolymsci.2006.11.002

    Article  CAS  Google Scholar 

  51. Wever DAZ, Raffa P, Picchioni F, Broekhuis AA (2012) Acrylamide homopolymers and acrylamide-N-isopropylacrylamide block copolymers by atomic transfer radical polymerization in water. Macromolecules 45:4040–4045. https://doi.org/10.1021/ma3006125

    Article  CAS  Google Scholar 

  52. Fischer H (1986) Unusual selectivities of radical reactions by internal suppression of fast modes. J Am Chem Soc 108:3925–3927. https://doi.org/10.1021/ja00274a012

    Article  CAS  Google Scholar 

  53. Wang Y, Zhong MJ, Zhang YZ, Magenau AJD, Matyjaszewski K (2012) Halogen conservation in atom transfer radical polymerization. Macromolecules 45:8929–8932. https://doi.org/10.1021/ma3018958

    Article  CAS  Google Scholar 

  54. Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly(R)-3-hydroxybutyrate and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202. https://doi.org/10.1021/ma8019865

    Article  CAS  Google Scholar 

  55. Shinde VS, Girme MR, Pawar VU (2011) Thermoresponsive polystyrene-b-poly (N-isopropylacrylamide) copolymers by atom transfer radical polymerization. Indian J Chem 50A:781–787

    Google Scholar 

  56. Quan ZL, Zhu KZ, Knudsen KD, Nystrom B, Lund R (2013) Tailoring the amphiphilicity and self-assembly of thermosensitive polymers: end-capped PEG-PNIPAAM block copolymers. Soft Matter 9:10768–10778. https://doi.org/10.1039/C3SM51945G

    Article  CAS  Google Scholar 

  57. Galperin A, Long TJ, Garty S, Ratner BD (2013) Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications. J Biomed Mater Res A 101:775–786. https://doi.org/10.1002/jbm.a.34380

    Article  CAS  Google Scholar 

  58. Li CM, Buurma NJ, Haq I, Turner C, Armes SP, Castelletto V, Hamley IW, Lewis AL (2005) Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 21:11026–11033. https://doi.org/10.1021/la0515672

    Article  CAS  Google Scholar 

  59. Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43:6485–6494. https://doi.org/10.1021/ma101090g

    Article  CAS  Google Scholar 

  60. Tai HY, Wang WX, Vermonden T, Heath F, Hennink WE, Alexander C, Shakesheff KM, Howdle SM (2009) Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacromol 10:822–828. https://doi.org/10.1021/bm801308q

    Article  CAS  Google Scholar 

  61. Mori H, Iwaya H, Nagai A, Endo T (2005) Controlled synthesis of thermoresponsive polymers derived from l-proline via RAFT polymerization. Chem Commun 4872–4874. https://doi.org/10.1039/b509212d

  62. Cui QL, Wu FP, Wang EJ (2011) Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure. J Phys Chem B 115:5913–5922. https://doi.org/10.1021/jp200659u

    Article  CAS  Google Scholar 

  63. Zhu JL, Zhang XZ, Cheng H, Li YY, Cheng SX, Zhuo RX (2007) Synthesis and characterization of well-defined, amphiphilic poly(N-isopropylacrylamide)-b-2-hydroxyethyl methacrylate-poly(epsilon-caprolactone) (n) graft copolymers by RAFT polymerization and macromonomer method. J Polym Sci A 45:5354–5364. https://doi.org/10.1002/pola.22280

    Article  CAS  Google Scholar 

  64. Zhang L, Bernard J, Davis TP, Barner-Kowollik C, Stenzel MH (2008) Acid-degradable core-crosslinked micelles prepared from thermosensitive glycopolymers synthesized via RAFT polymerization. Macromol Rapid Commun 29:123–129. https://doi.org/10.1002/marc.200700663

    Article  CAS  Google Scholar 

  65. Li YY, Cheng H, Zhu JL, Yuan L, Dai Y, Cheng SX, Zhang XZ, Zhuo RX (2009) Temperature- and pH-sensitive multicolored micellar complexes. Adv Mater 21:2402–2406. https://doi.org/10.1002/adma.200803770

    Article  CAS  Google Scholar 

  66. Ryu JH, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S (2010) Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J Am Chem Soc 132:17227–17235. https://doi.org/10.1021/ja1069932

    Article  CAS  Google Scholar 

  67. Aguirre G, Ramos J, Heuts JPA, Forcada J (2014) Biocompatible and thermo-responsive nanocapsule synthesis through vesicle templating. Polym Chem 5:4569–4579. https://doi.org/10.1039/c4py00297k

    Article  CAS  Google Scholar 

  68. Pissuwan D, Boyer C, Gunasekaran K, Davis TP, Bulmus V (2010) In vitro cytotoxicity of RAFT polymers. Biomacromol 11:412–420. https://doi.org/10.1021/bm901129x

    Article  CAS  Google Scholar 

  69. Shen WQ, Chang YL, Liu GY, Wang HF, Cao AN, An ZS (2011) Biocompatible, antifouling, and thermosensitive core-shell nanogels synthesized by RAFT aqueous dispersion polymerization. Macromolecules 44:2524–2530. https://doi.org/10.1021/ma200074n

    Article  CAS  Google Scholar 

  70. Ieong NS, Redhead M, Bosquillon C, Alexander C, Kelland M, O’Reilly RK (2011) The missing lactam-thermoresponsive and biocompatible poly(N-vinylpiperidone) polymers by xanthate-mediated RAFT polymerization. Macromolecules 44:886–893. https://doi.org/10.1021/ma1026466

    Article  CAS  Google Scholar 

  71. Chen SL, Wang K, Zhang WQ (2017) A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polym Chem 8:3090–3101. https://doi.org/10.1039/c7py00274b

    Article  CAS  Google Scholar 

  72. Huang YS, Chen JK, Chen T, Huang CF (2017) Synthesis of PNVP-bzased copolymers with tunable thermosensitivity by sequential reversible addition-fragmentation chain transfer copolymerization and ring-opening polymerization. Polymers 9:231–244. https://doi.org/10.3390/polym9060231

    Article  CAS  Google Scholar 

  73. Hedir GG, Arno MC, Langlais M, Husband JT, O’Reilly RK, Dove AP (2017) Poly(oligo(ethylene glycol) vinyl acetate)s: a versatile class of thermoresponsive and biocompatible polymers. Angew Chem 56:9178–9182. https://doi.org/10.1002/ange.201703763

    Article  CAS  Google Scholar 

  74. Chenal M, Mura S, Marchal C, Gigmes D, Charleux B, Fattal E, Couvreur P, Nicolas J (2010) Facile synthesis of innocuous comb-shaped polymethacrylates with peg side chains by nitroxide-mediated radical polymerization in hydroalcoholic solutions. Macromolecules 43:9291–9303. https://doi.org/10.1021/ma101880m

    Article  CAS  Google Scholar 

  75. Popescu D, Hoogenboom R, Keul H, Moeller M (2010) Thermoresponsive polyacrylates obtained via a cascade of enzymatic transacylation and FRP or NMP. Polym Chem 1:878–890. https://doi.org/10.1039/C0PY00051E

    Article  CAS  Google Scholar 

  76. Tian HY, Yan JJ, Wang D, Gu C, You YZ, Chen XS (2011) Synthesis of thermo-responsive polymers with both tunable UCST and LCST. Macromol Rapid Commun 32:660–664. https://doi.org/10.1002/marc.201000713

    Article  CAS  Google Scholar 

  77. Roth PJ, Jochum FD, Theato P (2011) UCST-type behavior of poly oligo(ethylene glycol) methyl ether methacrylate (POEGMA) in aliphatic alcohols: solvent, co-solvent, molecular weight, and end group dependences. Soft Matter 7:2484–2492. https://doi.org/10.1039/C0SM01324B

    Article  CAS  Google Scholar 

  78. Chua GBH, Roth PJ, Duong HTT, Davis TP, Lowe AB (2012) Synthesis and thermoresponsive solution properties of poly oligo(ethylene glycol) (meth)acrylamides: biocompatible peg analogues. Macromolecules 45:1362–1374. https://doi.org/10.1021/ma202700y

    Article  CAS  Google Scholar 

  79. Huang G, Li H, Feng ST, Li XQ, Tong GQ, Liu J, Quan CY, Jiang Q, Zhang C, Li ZP (2015) Self-assembled UCST-type micelles as potential drug carriers for cancer therapeutics. Macromol Chem Phys 216:1014–1023. https://doi.org/10.1002/macp.201400546

    Article  CAS  Google Scholar 

  80. Palanisami A, Sukhishvili SA (2018) Swelling transitions in layer-by-layer assemblies of UCST block copolymer micelles. Macromolecules 51:3467–3476. https://doi.org/10.1021/acs.macromol.8b00519

    Article  CAS  Google Scholar 

  81. Jana S, Biswas Y, Anas M, Saha A, Mandal TK (2018) Poly oligo(2-ethyl-2-oxazoline)acrylate-based poly(ionic liquid) random copolymers with coexistent and tunable lower critical solution temperature- and upper critical solution temperature-type phase transitions. Langmuir 34:12653–12663. https://doi.org/10.1021/acs.langmuir.8b03022

    Article  CAS  Google Scholar 

  82. Murugan P, Krishnamurthy M, Jaisankar SN, Samanta D, Mandal AB (2015) Controlled decoration of the surface with macromolecules: polymerization on a self-assembled monolayer (SAM). Chem Soc Rev 44:3212–3243. https://doi.org/10.1039/C4CS00378K

    Article  CAS  Google Scholar 

  83. Feng C, Li YJ, Yang D, Li YG, Hu JH, Zhai SJ, Lu GL, Huang XY (2010) Synthesis of well-defined PNIPAM-b-(PEA-g-P2VP) double hydrophilic graft copolymer via sequential SET-LRP and ATRP and its “schizophrenic” micellization behavior in aqueous media. J Polym Sci A 48:15–23. https://doi.org/10.1002/pola.23716

    Article  CAS  Google Scholar 

  84. Li N, Qi L, Shen Y, Li YP, Chen Y (2013) Thermoresponsive oligo(ethylene glycol)-based polymer brushes on polymer monoliths for all-aqueous chromatography. ACS Appl Mater Interfaces 5:12441–12448. https://doi.org/10.1021/am403510g

    Article  CAS  Google Scholar 

  85. Riachi C, Schuwer N, Klok HA (2009) Degradable polymer brushes prepared via surface-initiated controlled radical polymerization. Macromolecules 42:8076–8081. https://doi.org/10.1021/ma901537x

    Article  CAS  Google Scholar 

  86. Andruzzi L, Senaratne W, Hexemer A, Sheets ED, Ilic B, Kramer EJ, Baird B, Ober CK (2005) Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. Langmuir 21:2495–2504. https://doi.org/10.1021/la047574s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gayathri, V., Pentela, N., Samanta, D. (2020). Biocompatible Thermoresponsive Polymers: Property and Synthesis. In: Katiyar, V., Kumar, A., Mulchandani, N. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1251-3_7

Download citation

Publish with us

Policies and ethics