Skip to main content

Development of High-Endurance and Long-Retention FeFETs of Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si Gate Stacks

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

Studies of our Pt/CaySr1−yBi2Ta2O9(CSBT(y))/(HfO2)x(Al2O3)1−x(HAO(x))/Si MFIS FeFETs were reviewed which were originated from the Pt/SrBi2Ta2O9(SBT)/HAO(x = 0.75)/Si FeFET invented in 2002. Electrical properties of the first FeFET were introduced which were 106 s-long retention, 1012 cycles-high endurance, and 4 × 10−8 s-demonstrated writing speed. Stable IdVg curves and Id retentions were measured up to 85 °C using p-channel FeFETs. Individual requirements to the M, F, I, and IL layers as the components of MFIS were discussed using a band profile of the Pt/SBT/HAO(x = 0.75)/Si. Experimental studies for improving the HAO(x) and IL layer qualities were introduced. The composition ratio x in HAO(x) was optimized using single HAO(x) films and the MIS characters which all underwent a standard 800 °C annealing for SBT poly-crystallization. The ratio x ≧ 0.75 was found to be suitable for the I layer in the MFIS. As an ambient gas in depositing HAO(x = 0.75) by PLD, O2 and N2 were compared. In the Pt/SBT/HAO(x = 0.75)/Si FeFET, the HAO worked as a material diffusion barrier only when it was deposited in N2. The effect of increasing the ambient N2 pressure was studied using the FeFETs. The pressure should be less than 40 Pa for keeping a clear interface between the SBT and HAO. Direct nitriding Si was studied for enlarging the memory window of Pt/SBT/HAO(x = 0.75)/Si FeFET. Oxinitriding Si was also demonstrated as a modified way to decrease the subthreshold voltage swing of the FeFET. Experimental works to use CSBT(y) instead of the SBT was also introduced. The Pt/CSBT(y = 0.1, 0.2)/HAO(x = 0.75)/Si FeFETs showed wider pulse memory window VplsW than the reference Pt/SBT/HAO(x = 0.75)/Si FeFET at the common measurement conditions. When (VE, VP) = (−5 V, 7 V) and tpls = 1 μs, the Pt/CSBT(y = 0.1, 0.2)/HAO(x = 0.75)/Si FeFETs showed VplsW = 0.35 V which was 13% larger VplsW than the reference FeFET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors, ITRS Tables’ summaries, emerging research devices, Table PIDS7a (2013)

    Google Scholar 

  2. International Technology Roadmap for Semiconductors, ITRS Tables’ summaries, emerging research devices, Tables ERD3, ERD4a and ERD4b (2013)

    Google Scholar 

  3. Y. Tarui, T. Hirai, K. Teramoto, H. Koike, K. Nagashima, Appl. Surf. Sci. 113–114, 656 (1997)

    Google Scholar 

  4. S. Sakai, M. Takahashi, K. Takeuchi, Q.-H. Li, T. Horiuchi, S. Wang, K.-Y. Yun, M. Takamiya, T. Sakurai, Proceedings of 23rd IEEE Non-volatile Semiconductor Memory Workshop and 3rd International Conference on Memory Technology and Design (2008), p. 103

    Google Scholar 

  5. X. Zhang, M. Takahashi, K. Takeuchi1, S. Sakai, Jpn. J. Appl. Phys. 51, 04DD01 (2012)

    Google Scholar 

  6. M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)

    Google Scholar 

  7. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Semicond. Sci. Technol. 30, 015024 (2015)

    Google Scholar 

  8. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Jpn. J. Appl. Phys. 54, 088004 (2015)

    Google Scholar 

  9. S. Sakai, US Patent 7,226,795 (2005)

    Google Scholar 

  10. AIST press release on 24 October 2002.

    Google Scholar 

  11. S. Sakai, R. Ilangovan, IEEE Electron Dev. Lett. 25, 369 (2004)

    Google Scholar 

  12. C.A. paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature (London) 374, 627 (1995)

    Google Scholar 

  13. I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, M. Maeda, Jpn. J. Appl. Phys. 35, 4946 (1996)

    Google Scholar 

  14. S.J. Hyun, B.H. Park, S.D. Bu, J.H. Jung, T.W. Noh, Appl. Phys. Lett. 73, 2518 (1998)

    Google Scholar 

  15. S. Sakai, M. Takahashi, R. Ilangovan, IEDM Technical Digest (2004), p. 915

    Google Scholar 

  16. S. Sakai, R. Ilangovan, M. Takahashi, Extended Abstracts of 2004 International Workshop on Dielectric Thin Films for Future ULSI Devices Science and Technology (IWDTF 2004), Tokyo (2004), pp. 55–56

    Google Scholar 

  17. S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)

    Google Scholar 

  18. Q.-H. Li, T. Horiuchi, S. Wang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 24, 025012 (2009)

    Google Scholar 

  19. H.B. Michaelson, IBM J. Res. Dev. 22, 72 (1978)

    Google Scholar 

  20. A.K. Tagantsev, I. Stolichnov, N. Setter, J.S. Cross, M. Tsukada, Phys. Rev. B 66, 214109 (2002)

    Google Scholar 

  21. Q.-H. Li, S. Sakai, Appl. Phys. Lett. 89, 222910 (2006)

    Google Scholar 

  22. S. Sakai, X. Zhang, L.V. Hai, W. Zhang, M. Takahashi, Proceedings of 12th Non-volatile Memory Technology Symposium (NVMTS) (2012), pp. 55–59

    Google Scholar 

  23. K. Sakamaki, S. Sakai, Unpublished.

    Google Scholar 

  24. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, London, 1981), p. 447

    Google Scholar 

  25. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004)

    Google Scholar 

  26. H.Y. Yu, M.F. Li, B.J. Cho, C.C. Yeo, M.S. Joo, D.-L. Kwong, J.S. Pan, C.H. Ang, J.Z. Zheng, S. Ramanathan, Appl. Phys. Lett. 81, 376 (2002)

    Google Scholar 

  27. W. Zhang, M. Takahashi, Y. Sasaki, M. Kusuhara, S. Sakai, Jpn. J. Appl. Phys. 56, 04CE04 (2017)

    Google Scholar 

  28. D.R. Wolters, I.J. van der Schoot, Philips J. Res. 40, 115 (1985)

    Google Scholar 

  29. J.F. Verweij, J.H. Klootwijk, Microelectron. J. 27, 611 (1996)

    Google Scholar 

  30. M. Fukuda, W. Mizubayashi, A. Kohno, S. Miyazaki, M. Hirose, Jpn. J. Appl. Phys. 37, L1534 (1998)

    Google Scholar 

  31. E. Tokumitsu, G. Fujii, H. Ishiwara, Jpn. J. Appl. Phys. 39, 2125 (2000)

    Google Scholar 

  32. K. Yan, M. Takahashi, S. Sakai, Appl. Phys. A: Mater. Sci. Process. 108, 835 (2012)

    Google Scholar 

  33. S. Sakai, W. Zhang, M, Takahashi, J. Phys. D: Appl. Phys. 50, 165107 (2017)

    Google Scholar 

  34. K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66, 221 (1995)

    Google Scholar 

  35. T. Atsuki, N. Soyama, T. Yonezawa, K. Ogi, Jpn. J. Appl. Phys. 34, 5096 (1995)

    Google Scholar 

  36. T. Noguchi, T. Hase, Y. Miyasaka, Jpn. J. Appl. Phys. 35, 4900 (1996)

    Google Scholar 

  37. T. Horiuchi, K. Ohhashi, M. Takahashi, S. Sakai, Funtai Oyobi Funmatsu Yakin 55, 17 (2008) (in Japanese)

    Google Scholar 

  38. M. Takahashi, T. Horiuchi, S. Wang, Q.-H. Li, S. Sakai, J. Vac. Sci. Technol. B 26, 1585 (2008)

    Google Scholar 

  39. T. Horiuchi, M. Takahashi, K. Ohhashi, S. Sakai, Semicond. Sci. Technol. 24, 105026 (2009)

    Google Scholar 

  40. T. Horiuchi, M. Takahashi, Q.-H. Li, S. Wang, S. Sakai, Semicond. Sci. Technol. 25, 055005 (2010)

    Google Scholar 

  41. Y. Noguchi, H. Shimizu, M. Miyayama, K. Oikawa, T. Kamiyama, Jpn. J. Appl. Phys. 40, 5812 (2001)

    Google Scholar 

  42. R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, S.B. Desu, Appl. Phys. Lett. 80, 637 (2002)

    Google Scholar 

  43. R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, Jpn. J. Appl. Phys. 42, 163 (2003)

    Google Scholar 

  44. W. Zhang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 28, 085003 (2013)

    Google Scholar 

  45. K. Kato, K. Suzuki, K. Nishizawa, T. Miki, J. Appl. Phys. 88, 3779 (2000)

    Google Scholar 

  46. S. Sakai, M. Takahashi, K. Motohashi, Y. Yamaguchi, N. Yui, T. Kobayashi, J. Vac. Sci. Technol. A 25, 903 (2007)

    Google Scholar 

  47. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Phys. Rev. B 61, 6559 (2000)

    Google Scholar 

  48. R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, Appl. Phys. Lett. 78, 2925 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors thank all the researchers and the staffs who were sincerely engaged in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsue Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, M., Sakai, S. (2020). Development of High-Endurance and Long-Retention FeFETs of Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si Gate Stacks. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_2

Download citation

Publish with us

Policies and ethics