Skip to main content

Novel Application of FeFETs to NAND Flash Memory Circuits

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

  • 1856 Accesses

Abstract

A 64 kbit (kb) one-transistor-type ferroelectric memory array and peripheral logic circuits were integrated and characterized. N-channel Pt/SrBi2Ta2O9/Hf–Al–O/Si ferroelectric-gate field-effect transistors (FeFETs) were used as the memory cells. The array was designed as a NAND flash memory, which had 32 blocks and 8 word lines × 256 bit lines per block. The bit-line and block selector logic circuits were represented by logic NOT and NAND units that were constructed by the complimentary structure of an n-channel FeFET and a p-channel FeFET. The erase, program, and nondestructive read operations were demonstrated for all blocks. The reading of the memory cells showed a clear separation of their erased and all “1”-programmed states. Threshold-voltage retention of one block showed no significant degradation after 2 days. To program arbitrary “1” and “0” patterns a single-cell self-boost program scheme was introduced that can reduce program-disturb and power dissipation, and in fact very low program-inhibit-bit-line voltage (≤1.0 V) was achieved. Using this scheme the memory cells were programmed in “1” and “0” checkered pattern, and two distinguishable threshold-voltage distributions of 1 block (2 k cells) could be read out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Tarui, T. Hirai, K. Teramoto, H. Koike, and K. Nagashima: Appl. Surf. Sci. 113, 656 (1997).

    Google Scholar 

  2. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2000) Chap. 12, p. 175

    Google Scholar 

  3. S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25 369 (2004)

    Google Scholar 

  4. M. Okuyama, Y. Ishibashi (eds.), Ferroelectric Thin Films—Basic Properties and Device Physics for Memory Applications (Springer, Berlin, 2005) Part 4, p. 219

    Google Scholar 

  5. S. Sakai, Adv. Sci. Technol. 45, 2382 (2006)

    Google Scholar 

  6. H. Ishiwara, Curr. Appl. Phys. 9, S2 (2009)

    Google Scholar 

  7. S. Sakai, M. Takahashi, Materials 3, 4950 (2010)

    Google Scholar 

  8. T. Hatanaka, R. Yajima, T. Horiuchi, S. Wang, X. Zhang, M. Takahashi, S. Sakai, K. Takeuchi, IEEE J. Solid-State Circuits, 45, 2156 (2010)

    Google Scholar 

  9. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, IEDM Tech. Dig. (2011), p. 547

    Google Scholar 

  10. S. Sakai, X. Zhang, L.V. Hai, W. Zhang, M. Takahashi, in Proceedings of the 12th IEEE Annual Non-volatile Memory Technology Symposium (2012), p. 55.

    Google Scholar 

  11. S. Sakai, US Patent 7,226,795 (2005)

    Google Scholar 

  12. S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)

    Google Scholar 

  13. S. Sakai, M. Takahashi, R. Ilangovan, IEDM Tech. Dig., 915 (2004)

    Google Scholar 

  14. M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)

    Google Scholar 

  15. Q.-H. Li, S. Sakai, Appl. Phys. Lett. 89, 222910 (2006)

    Google Scholar 

  16. T. Horiuchi, M. Takahashi, Q.-H. Li, S. Wang, S. Sakai, Semicond. Sci. Technol. 25, 055005 (2010)

    Google Scholar 

  17. Q.-H. Li, M. Takahashi, T. Horiuchi, S. Wang, S. Sakai, Semicond. Sci. Technol. 23, 045011 (2008)

    Google Scholar 

  18. Q.-H. Li, T. Horiuchi, S. Wang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 24, 025012 (2009)

    Google Scholar 

  19. M. Takahashi, T. Horiuchi, Q.-H. Li, S. Wang, K.-Y. Yun, S. Sakai, Electron. Lett. 44, 467 (2008)

    Google Scholar 

  20. M. Takahashi, S. Wang, T. Horiuchi, S. Sakai, IEICE Electron. Express 6, 831 (2009)

    Google Scholar 

  21. L.V. Hai, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 25, 115013 (2010)

    Google Scholar 

  22. L.V. Hai, M. Takahashi, S. Sakai, in Proceedings of 3rd IEEE International Memory Workshop, 2011, p. 175.

    Google Scholar 

  23. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Semicond. Sci. Technol. 30, 015024 (2015)

    Google Scholar 

  24. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Jpn. J. Appl. Phys. 54, 088004 (2015)

    Google Scholar 

  25. S. Sakai, M. Takahashi, K. Takeuchi, Q.H. Li, T. Horiuchi, S. Wang, K.Y. Yun, M. Takamiya, T. Sakurai, in Proceedings of 23rd IEEE Non-volatile Semiconductor Memory Workshop: 3rd International Conference on Memory Technology and Design (2008), p. 103.

    Google Scholar 

  26. S. Wang, M. Takahashi, Q.-H. Li, K. Takeuchi, S. Sakai, Semicond. Sci. Technol. 24 105029 (2009)

    Google Scholar 

  27. K. Miyaji, S. Noda, T. Hatanaka, M. Takahashi, S. Sakai, K. Takeuchi, Solid-State Electron. 58, 34 (2011)

    Google Scholar 

  28. X.-Z. Zhang, K. Miyaji, M. Takahashi, K. Takeuchi, S. Sakai, in Proceedings of 3rd IEEE International Memory Workshop (2011), p. 155.

    Google Scholar 

  29. X. Zhang, M. Takahashi, S. Sakai, Integrated Ferroelectr. 132, 114 (2012)

    Google Scholar 

  30. X. Zhang, M. Takahashi, K. Takeuchi, S. Sakai, Jpn. J. Appl. Phys. 51, 04DD01 (2012)

    Google Scholar 

  31. K. Imamiya, H. Nakamura, T. Himeno, T. Yamamura, T. Ikehashi, K. Takeuchi, K. Kanda, K. Hosono, T. Futatsuyama, K. Kawai, R. Shirota, N. Arai, F. Arai, K. Hatakeyama, H. Hazama, M. Saito, H. Meguro, K. Conley, K. Quader, J.J. Chen, IEEE J. Solid-State Circuits 37, 1493 (2002)

    Google Scholar 

  32. International Technology Roadmap for Semiconductors 2007 Edition, Process Integration, Devices, and Structures. Table PIDS5a Non-volatile Memory Technology Requirements Near-term Years

    Google Scholar 

  33. S. Wang, M. Takahashi, S. Sakai, unpublished

    Google Scholar 

  34. X. Zhang, M. Takahashi, S. Sakai, unpublished

    Google Scholar 

  35. T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, H. Hara, IEEE J. Solid-State Circuits 29, 1366 (1994)

    Google Scholar 

  36. M. Momodomi, T. Tanaka, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi, F. Masuoka, IEEE J. Solid-State Circuits 26 492 (1991)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by New Energy and Industrial Technology Development Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakai, S., Takahashi, M. (2020). Novel Application of FeFETs to NAND Flash Memory Circuits. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_16

Download citation

Publish with us

Policies and ethics