Skip to main content

Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials

  • Conference paper
  • First Online:
Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory (ICRAPAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 307))

Abstract

In this article, a new method has been developed for solving the mixed second kind Volterra–Fredholm integral equations numerically. A method is introduced in this paper is known as the Bernoulli matrix method. It is applied for solving mixed VFIE’s integral equations. The one property of this method is that it reduces the degree of the problem for solving a structure of algebraic equations. Our proposed method is introduced and it is applied to convert the integral equation into the algebraic equation using of Bernoulli matrix equation. Finally, there are some numerical results that have been given for illustrating the efficiency and exactness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Borzabadi, A.V. Kamyad, H.H. Mehne, A different approach for solving the nonlinear Fredholm integral equations of the second kind. Appl. Math. Comput. 173, 724–735 (2006)

    MathSciNet  MATH  Google Scholar 

  2. E. Babolian, F. Fattahzadeh, E. Golpar Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 189, 641–646 (2007)

    Article  MathSciNet  Google Scholar 

  3. R.P. Agarwal, Boundary value problems for higher order integro-differential equations. Nonlin. Anal. Theory Methods Appl. 9, 259–270 (1983)

    Article  MathSciNet  Google Scholar 

  4. S. Youse, M. Razzaghi, Legendre wavelet method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 70, 1–8 (2005)

    Article  MathSciNet  Google Scholar 

  5. A.M. Wazwaz, “Linear and Nonlinear Integral Equations”: Methods and Applications (Springer, Saint Xavier University Chicago, USA, 2011)

    Book  Google Scholar 

  6. K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations. Comput. Math Appl. 37, 18 (1999)

    Article  MathSciNet  Google Scholar 

  7. F. Mirzaee , E. Hadadiyan, Numerical Solution of Volterra–Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 280, 110–123 (2016)

    Article  MathSciNet  Google Scholar 

  8. J.P. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 56, 409–424 (1989)

    Article  MathSciNet  Google Scholar 

  9. E. Yusufoglu, E. Erbas, Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules. Kybernetes 37(6), 768–785 (2008)

    Article  MathSciNet  Google Scholar 

  10. M.A. Abdou, F.A. Salama, Volterra-Fredholm integral equation of the first kind and spectral relationships. J. Appl. Math. Comput. 153, 141–153 (2004)

    Article  MathSciNet  Google Scholar 

  11. S.J. Majeed, H.H. Omran, Numerical methods for solving linear Volterra-Fredholm integral equations. J. Al-Nahrain Univ. 11(3), 131–134 (2008)

    Article  Google Scholar 

  12. J.A. Al-A’asam, Deriving the composite Simpson rule by using Bernstein polynomials for solving Volterra integral equations. Baghdad Sci. J. 11(3) (2014)

    Google Scholar 

  13. Y. Al-Jarrah, E.B. Lin, Numerical solution of Fredholm-Volterra integral equations by using scaling function interpolation method. Appl. Math. 4, 204–209 (2013)

    Article  Google Scholar 

  14. L. Hącia, Computational methods for Volterra-Fredholm integral equations. Comput. Methods Sci. Technol. 8(2), 13–26 (2002)

    Article  Google Scholar 

  15. F. Mohammadi, A Chebyshev wavelet operational method for solving stochastic Volterra-Fredholm integral equations. Int. J. Appl. Math. Res. 4(2), 217–227 (2015)

    Article  Google Scholar 

  16. M.M. Mustafa, I.N. Ghanim, Numerical solution of linear Volterra-Fredholm integral equations using lagrange polynomials. Math. Theor. Model. 4(5) (2014)

    Google Scholar 

  17. M.K. Shahooth, Numerical solution for solving mixed Volterra-Fredholm integral equations of second kind by using. Bernstein Polynomials AIP Adv. 7, 125123 (2017)

    Article  Google Scholar 

  18. J. Bernoulli, Ars conjectandi, Basel, (1713), posthumously published, p. 97

    Google Scholar 

  19. L. Euler, Methodus generalis summandi progressiones. Comment. Acad. Sci. Petrop. 6(1738)

    Google Scholar 

  20. P.E. Appell, Sur une classe de polynomes. Annales d’ecole normale superieur,s. 2, 9 (1882)

    Google Scholar 

  21. E. Lucas, Th´eorie des Nombres, Paris (1891) (Chapter 1)

    Google Scholar 

  22. D.H. Lehmer, A new approach to Bernoulli polynomials. Am. Math. Month. 95, 905–911 (1988)

    Article  MathSciNet  Google Scholar 

  23. E. Tohidi, A.H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37(6), 4283–4294 (2013)

    Article  MathSciNet  Google Scholar 

  24. F. Toutounian, E. Tohidi, A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput. 223, 298–310 (2013)

    MathSciNet  MATH  Google Scholar 

  25. F.A. Costabile, F. Dell’ Accio, Expansions over a rectangle of real functions in Bernoulli polynomials and applications. BIT Numer. Math. 41, 451–464 (2001)

    Google Scholar 

  26. P. Natalini, A. Bernaridini, A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155–163 (2003)

    Article  MathSciNet  Google Scholar 

  27. S. Bazam, Bernoulli polynomials for the numerical solution of same classes of linear and non-linear integral equations. J. Comput. Appl. Math. (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, M., Handa, N., Singhal, S. (2020). Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials. In: Deo, N., Gupta, V., Acu, A., Agrawal, P. (eds) Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory. ICRAPAM 2018. Springer Proceedings in Mathematics & Statistics, vol 307. Springer, Singapore. https://doi.org/10.1007/978-981-15-1157-8_1

Download citation

Publish with us

Policies and ethics