Skip to main content

Intelligent Decoupling Control of Gas Collection and Mixing-and-Pressurization Processes

  • Chapter
  • First Online:
Intelligent Optimization and Control of Complex Metallurgical Processes

Part of the book series: Engineering Applications of Computational Methods ((EACM,volume 3))

  • 439 Accesses

Abstract

Coke is an important raw material in the metallurgy industry [1]. In the coking process, large amount of by-product gas will be generated from coke-ovens [2], and the process of recycling by-product gas is called gas collecting process. Gas collection involves using gas collectors to collect the gas produced by coke-ovens and sending it where it will be used. Generally, several coke-ovens are in operation at the same time. After the purification of the coal gas, the gas mixing-and-pressurization process of clean coal gas together with clean coal gas is a very important step in the production of steel and nonferrous metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadaki J, Tanaka K, Naganuma Y (1993) Automatic coking control system. In: Proceedings of IEEE Conference on Control Applications, pp 531–538

    Google Scholar 

  2. Loison R, Foch P, Boyer A (1989) Coke: Quality and Production. Butterworths, London

    Google Scholar 

  3. Jenkins DR (2001) Plastic layer permeability estimation using a model of gas pressure in a coke oven. Fuel 80(14):2057–2065

    Article  Google Scholar 

  4. Gray RJ (1990) Coke Oven Wall Pressures: Measurement, Cause and Effect. Iron and Steel Society Inc, Pittsburgh

    Google Scholar 

  5. Wu M, Yan J, She JH, Cao WH (2009) Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens. IEEE Trans Ind Electron 56(7):2782–2792

    Article  Google Scholar 

  6. Gamrat S, Poraj J, Bodys J, Smolka J, Adamczyk W (2016) Influence of external flue gas recirculation on gas combustion in a coke oven heating system. Fuel Process Technol 152:430–437

    Article  Google Scholar 

  7. Weng Y, Gao X (2017) Data-driven robust output tracking control for gas collector pressure system of coke ovens. IEEE Trans Ind Electron 64(5):4187–4198

    Article  Google Scholar 

  8. Coking Experts Group (1978) Coking technologies. Metallurgical Industry Press, Beijing (In Chinese)

    Google Scholar 

  9. Wu M, Cao WH, He CY, She JH (2009) Integrated intelligent control of gas mixing-and-pressurization process. IEEE Trans Control Syst Technol 17(1):68–77

    Article  Google Scholar 

  10. Yuan C, Cao WH, Yuan Y, Wu M, Zhang Y (2014) Integrated modeling for gas mixing process based on mechanism and subspace identification. In: The 26th Chinese control and decision conference, pp 1912–1917

    Google Scholar 

  11. Li Z (1998) Discussion on methods of stabilizing caloric value of mixed gas used for a heating furnace. Metall Power 2:14–17 (In Chinese)

    Google Scholar 

  12. Niemueller T, Zug S, Schneider S, Karras U (2016) Knowledge-based instrumentation and control for competitive industry-inspired robotic domains. K\(\ddot{\rm u}\)nstliche Intelligenz 30(3–4):1–11

    Article  Google Scholar 

  13. Liu J (2018) Intelligent control design and Matlab simulation. Springer, New York

    Book  MATH  Google Scholar 

  14. Zuhrie MS, Munoto, Hariadi E, Muslim S (2018) The design of artificial intelligence robot based on fuzzy logic controller algorithm. IOP Conf Ser: Mater Sci Eng 336(1):012020-1–012020-9

    Article  Google Scholar 

  15. Xie S, Xie Y, Yang C, Gui W, Wang Y (2018) Distributed parameter modeling and optimal control of the oxidation rate in the iron removal process. J Process Control 61:47–57

    Article  Google Scholar 

  16. Cai ZX (1997) Intelligent control: principles, techniques and applications. World Scientific Publishing Co., Ltd., Singapore

    Google Scholar 

  17. Åström KJ, Anton JJ, Årzén KE (1986) Expert control. Automatica 22(3):277–286

    Article  MATH  Google Scholar 

  18. Wang H, Sheng C, Lu X (2017) Knowledge-based control and optimization of blast furnace gas system in steel industry. IEEE Access 5(99):25034–25045

    Article  Google Scholar 

  19. Albusac J, Vallejo D, Castro-Schez JJ, Gzlez-Morcillo C (2018) An expert fuzzy system for improving safety on pedestrian crossings by means of visual feedback. Control Eng Pract 75:38–54

    Article  Google Scholar 

  20. Hou LL, Yang HP, Zhao YJ (1995) Microcomputer control system design for coke oven gas collecting pressure process. Coal Convers 18(2):91–95 (In Chinese)

    Google Scholar 

  21. Yang CH, Wu M, Shen DY, Deconinck G (2001) Hybrid intelligent control of gas collectors of coke ovens. Control Eng Pract 9(7):725–733

    Article  Google Scholar 

  22. Mahmoud MS (2018) Fuzzy control, estimation and diagnosis. Springer, New York

    Google Scholar 

  23. Su X, Xia F, Liu J, Wu L (2018) Event-triggered fuzzy control of nonlinear systems with its application to inverted pendulum systems. Automatica 94:236–248

    Article  MathSciNet  MATH  Google Scholar 

  24. Precup RE, David RC, Petriu EM (2016) Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans Ind Electron 64(1):527–534

    Article  Google Scholar 

  25. Ahmed MS, Bhatti UL, Al-Sunni FM, El-Shafei M (2001) Design of a fuzzy servo-controller. Fuzzy Sets Syst 124(2):231–147

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuvapriya T, Lakshmi P (2017) Design of fuzzy logic controller for reduction of vibration in full car model using active suspension system. Asian J Res Soc Sci Hum 7(3):302–313

    Google Scholar 

  27. Osorio R, Alonso JM, Vazquez N, Pinto SE, Sorcia-Vazquez FDJ, Martnez M, Barrera LM (2018) Fuzzy logic control with an improved algorithm for integrated led drivers. IEEE Trans Ind Electron 65(9):6994–7003

    Article  Google Scholar 

  28. Hu X, Xu B, Hu C (2018) Robust adaptive fuzzy control for HFV with parameter uncertainty and unmodelled dynamics. IEEE Trans Ind Electron 65(11):8851–8860

    Article  Google Scholar 

  29. Feng G, Lai C, Kar N (2016) A closed-loop fuzzy logic based current controller for PMSM torque ripple minimization using the magnitude of speed harmonic as the feedback control signal. IEEE Trans Ind Electron 64(4):2642–2653

    Article  Google Scholar 

  30. Eker İ, Torun Y (2006) Fuzzy logic control to be conventional method. Energy Convers Manag 47(4):377–394

    Article  Google Scholar 

  31. Li CH, Liu CS, Li HJ, Zheng ZM (1997) Development and application of a pressure self-optimizing fuzzy control system for gas collector of coke oven. Metall Ind Autom 5:32–34 (In Chinese)

    Google Scholar 

  32. Zhou B, Li WY (2003) Application of fuzzy theory on gas collector control. In: International conference on machine learning and cybernetics, pp 2516–2519

    Google Scholar 

  33. Fang KL, Zhou HJ, Huang WH (2003) Fuzzy decoupling adjustment for the pressure of coke oven collecting main. In: International conference on machine learning and cybernetics, pp 2605–2608

    Google Scholar 

  34. Li H, Yang S, Ren H (2016) Dynamic decoupling control of DGCMG gimbal system via state feedback linearization. Mechatronics 36:127–135

    Article  Google Scholar 

  35. Fang J, Yin R, Lei X (2015) An adaptive decoupling control for three-axis gyro stabilized platform based on neural networks. Mechatronics 27:38–46

    Article  Google Scholar 

  36. Wang Y, Chai T, Fu J, Sun J, Wang H (2013) Adaptive decoupling switching control of the forced-circulation evaporation system using neural networks. IEEE Trans Control Syst Technol 21(3):964–974

    Article  Google Scholar 

  37. Zhu HL, Meng Z, Lu W, Zhu ZN, Zhang D (2015) Control system design for lattice distortion modification test equipment based on fuzzy compensated decoupling. Appl Mech Mater 709:308–311

    Article  Google Scholar 

  38. Gao SZ, Yang J, Wang JS (2014) D-FNN based modeling and BP neural network decoupling control of PVC stripping process. Math Probl Eng 835–892

    Google Scholar 

  39. Wang C, Zhao W, Luan Z, Gao Q, Deng K (2018) Decoupling control of vehicle chassis system based on neural network inverse system. Mech Syst Signal Process 106:176–197

    Article  Google Scholar 

  40. Sun W, Yang DP, Yue D, Cheng YH (2000) Intelligent control for pressure system of gas collecting pipe of coke oven. J China Univ Min Technol 29(5):503–505 (In Chinese)

    Google Scholar 

  41. Qin B, Wang X, Wu M (2005) Application of multi-agent system to coke ovens. Iron Steel 40(10):25–28 (In Chinese)

    Google Scholar 

  42. Liu XQ, Hao R, Tan DJ, Sun W (2000) Application of compensated decoupling arithmetic in discharge header pressure control system. J China Univ Min Technol 29(2):2115–218 (In Chinese)

    Google Scholar 

  43. Cao WH, Wu M, Hou SY (2006) Implementation of intelligent decoupling control method for gas mixing and pressurization. J Central South Univ 37(4):780–785 (In Chinese)

    Google Scholar 

  44. Lin B (2003) The computer control on gas calorific value. Control Instrum Chem Ind 30(1):75–77 (In Chinese)

    Google Scholar 

  45. Qin L (2002) Control for mixed gas calorific value with decoupling and Smith compensator. Control Eng China 9(4):73–75 (In Chinese)

    Google Scholar 

  46. Ren HL, Li SY (2004) Fuzzy decoupling control of pressure and heating power for mixed gas. Process Autom Instrum 25(3):65–67 (In Chinese)

    Google Scholar 

  47. Jing YH, Fang CZ (1993) Process control. Tsinghua University Press, Beijing (In Chinese)

    Google Scholar 

  48. Bristol EH (1966) On a new measure of interaction for multivariable process control. IEEE Trans Autom Control 11(1):133–134

    Article  Google Scholar 

  49. Mizuochi M, Tsuji T, Ohnishi K (2007) Multirate sampling method for acceleration control system. IEEE Trans Ind Electron 54(3):1462–1471

    Article  Google Scholar 

  50. Li CT (2003) Review for commissioning of gas mixing and pressuring station. Metall Power 18(6):31–32 (In Chinese)

    Google Scholar 

  51. Bartos FJ (1996) Fuzzy logic reaches adulthood. Control Eng 43(10):50–56

    Google Scholar 

  52. Lee SJ, Kwon YA (2007) Study on fuzzy reasoning application for sensory evaluation of sausages. Food Control 18(7):811–816

    Article  Google Scholar 

  53. Meng JE, Mandal S (2016) A survey of adaptive fuzzy controllers: nonlinearities and classifications. IEEE Trans Fuzzy Syst 24(5):1095–1107

    Article  Google Scholar 

  54. Wiktorowicz K (2017) Design of state feedback adaptive fuzzy controllers for second-order systems using a frequency stability criterion. IEEE Trans Fuzzy Syst 25(3):499–510

    Article  Google Scholar 

  55. Wu HC (2007) Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options. Appl Math Comput 185(1):136–146

    MathSciNet  MATH  Google Scholar 

  56. Sha TJ (2003) The capability and application of control valves group. China Instrum 20(1):16–19 (In Chinese)

    Google Scholar 

  57. Hu Y, Liu G (2016) Intelligent decoupling of gas collector pressure based on internal model control. In: Chinese control and decision conference, pp 4302–4305

    Google Scholar 

  58. Wang JS, Xie C (2006) Redial basis function neural network-based robotic joint intelligent decoupling control. In: Wavelet active media technology and information processing, pp 86–91

    Google Scholar 

  59. Fu Y, Chai T (2009) Intelligent decoupling control of nonlinear multivariable systems and its application to a wind tunnel system. IEEE Trans Control Syst Technol 17(6):1376–1384

    Google Scholar 

  60. Jantzen J (2007) Foundations of fuzzy control. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, M., Cao, W., Chen, X., She, J. (2020). Intelligent Decoupling Control of Gas Collection and Mixing-and-Pressurization Processes. In: Intelligent Optimization and Control of Complex Metallurgical Processes. Engineering Applications of Computational Methods, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-15-1145-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1145-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1144-8

  • Online ISBN: 978-981-15-1145-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics