Skip to main content
  • 754 Accesses

Abstract

With the advent of genome-editing technologies, targeting genome engineering is no longer a hypothetical abstract. As application area of genome-editing tools is extending beyond the limits of research and biomedical remedies, specific ethical apprehensions are prevalent around the global community about the appropriate scope of genome-editing tools to be used. Genome-editing tools, i.e., meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats (CRISPR/Cas system), accelerate cancer research not only in its base study as well as in its cure by dissecting the mechanism of tumor development, categorizing targets for drug progression, and identifying arm cells for cell-dependent therapies. Current applications of cancer research and cure are discussed in this chapter. Moreover, it has also been discussed that genome editing is the possible cause of enhancing the risk of cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Pan F, Pan D, Pardoll DM, Barbi J, Fu J (2019) Compositions and methods for targeting activin signaling to treat cancer. Google Patents

    Google Scholar 

  3. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, Nyman J, Sakuishi K, Kurtulus S, Gennert D (2016) A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166(6):1500–1511.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogene 5(1):e189

    Article  CAS  Google Scholar 

  5. Beguin E (2018) Sonodynamic therapy of hypoxic tumours. University of Oxford, Oxford

    Google Scholar 

  6. Grossman DC, Curry SJ, Owens DK, Barry MJ, Davidson KW, Doubeni CA, Epling JW, Kemper AR, Krist AH, Kurth AE (2018) Screening for ovarian cancer: US preventive services task force recommendation statement. JAMA 319(6):588–594

    Article  PubMed  Google Scholar 

  7. Sasieni PD, Parkin DM (2018) Global perspectives surrounding cancer prevention and screening. In: Cancer prevention and screening: concepts, principles and controversies, p 1

    Google Scholar 

  8. Thompson R, Mitrou G, Brown S, Almond E, Bandurek I, Brockton N, Kälfors M, McGinley-Gieser D, Sinclair B, Meincke L (2018) Major new review of global evidence on diet, nutrition and physical activity: a blueprint to reduce cancer risk. Nutr Bull 43(3):269–283

    Article  Google Scholar 

  9. Knoll LJ, Hogan DA, Leong JM, Heitman J, Condit RC (2018) Pearls collections: what we can learn about infectious disease and cancer. PLoS Pathog 14(3):e1006915. https://doi.org/10.1371/journal.ppat.1006915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  11. Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, Anderson BO (2018) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol 4(11):1553–1568

    Article  PubMed  Google Scholar 

  12. Doubeni CA, Gabler NB, Wheeler CM, McCarthy AM, Castle PE, Halm EA, Schnall MD, Skinner CS, Tosteson AN, Weaver DL (2018) Timely follow-up of positive cancer screening results: a systematic review and recommendations from the PROSPR consortium. CA Cancer J Clin 68(3):199–216

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gapstur SM, Drope JM, Jacobs EJ, Teras LR, McCullough ML, Douglas CE, Patel AV, Wender RC, Brawley OW (2018) A blueprint for the primary prevention of cancer: targeting established modifiable risk factors. CA Cancer J Clin 68(6):446–470

    Article  PubMed  Google Scholar 

  14. Forman D, Bauld L, Bonanni B, Brenner H, Brown K, Dillner J, Kampman E, Manczuk M, Riboli E, Steindorf K (2018) Time for a European initiative for research to prevent cancer: a manifesto for Cancer Prevention Europe (CPE). J Cancer Policy 17:15–23

    Article  Google Scholar 

  15. Vargo JA, Moiseenko V, Grimm J, Caudell J, Clump DA, Yorke E, Xue J, Vinogradskiy Y, Moros EG, Mavroidis P (2018) Head and neck tumor control probability: radiation dose–volume effects in stereotactic body radiation therapy for locally recurrent previously-irradiated head and neck cancer: report of the AAPM working group. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2018.01.044

  16. Alam A, Farooq U, Singh R, Dubey V, Kumar S, Kumari R, Kumar K, Naik B, Dhar K (2018) Chemotherapy treatment and strategy schemes: a review. J Toxicol 2(7):555600. https://doi.org/10.19080/OAJT.2018.02.555600

    Article  Google Scholar 

  17. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66(4):271–289

    Article  PubMed  Google Scholar 

  18. Perkins A, Liu G (2016) Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician 93(3):211–217

    PubMed  Google Scholar 

  19. Hecht SS, Carmella SG, Murphy SE, Stepanov I, Balbo S, Hatsukami DK, Yuan J-M, Park SL, Stram DO, Haiman C (2016) Tobacco smoke toxicant and carcinogen biomarkers and lung cancer susceptibility in smokers. J Thorac Oncol 11(2):S7–S8

    Article  Google Scholar 

  20. Gazdar AF, Zhou C (2018) Lung cancer in never-smokers: a different disease. In: IASLC thoracic oncology. Elsevier, pp 23–29.e23

    Google Scholar 

  21. Kuper H, Adami HO, Boffetta P (2002) Tobacco use, cancer causation and public health impact. J Intern Med 251(6):455–466

    Article  CAS  PubMed  Google Scholar 

  22. Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M, Gansler T, Andrews KS, Thun MJ (2006) American Cancer Society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 56(5):254–281

    Article  PubMed  Google Scholar 

  23. Park S, Bae J, Nam B-H, Yoo K-Y (2008) Aetiology of cancer in Asia. Asian Pac J Cancer Prev 9(3):371–380

    PubMed  Google Scholar 

  24. Pagano JS, Blaser M, Buendia M-A, Damania B, Khalili K, Raab-Traub N, Roizman B (2004) Infectious agents and cancer: criteria for a causal relation. In: Seminars in cancer biology, vol 6. Elsevier, Amsterdam, pp 453–471

    Google Scholar 

  25. Sonker P, Tewari AK, Chaube SK, Kumar R, Sharma VP, Sonker A, Yadav P (2018) A study on cancer and its drugs with their molecular structure and mechanism of action: A Review. World J Pharm Sci 6(7):13–34

    Google Scholar 

  26. Samaras V, Rafailidis PI, Mourtzoukou EG, Peppas G, Falagas ME (2010) Chronic bacterial and parasitic infections and cancer: a review. J Infect Dev Ctries 4(05):267–281

    Article  PubMed  Google Scholar 

  27. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  PubMed  Google Scholar 

  28. Roukos DH (2009) Genome-wide association studies: how predictable is a person’s cancer risk? Expert Rev Anticancer Ther 9(4):389–392

    Article  PubMed  Google Scholar 

  29. Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V, collaborators MWS (2011) Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol 12(8):785–794

    Article  PubMed  PubMed Central  Google Scholar 

  30. Forschungsgemeinschaft D (2015) Carcinogenic substances. In: List of MAK and BAT values 2015: permanent senate commission for the investigation of health hazards of chemical compounds in the work area, pp 163–181

    Google Scholar 

  31. Jeon S-Y, Hwang K-A, Choi K-C (2016) Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol 158:1–8

    Article  CAS  PubMed  Google Scholar 

  32. Breitling R, Takano E (2016) Synthetic biology of natural products. Cold Spring Harb Perspect Biol 8(10):a023994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Carroll D, Golic MM, Bibikova M, Drews G, Golic KG (2016) Targeted chromosomal mutagenesis using zinc finger nucleases. Google Patents

    Google Scholar 

  34. Forsyth A, Weeks T, Richael C, Duan H (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7:1572

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang M, Zhou X, Wang H, Xing D (2018) Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem 90(3):2193–2200

    Article  CAS  PubMed  Google Scholar 

  36. Smith JJ, Jantz D, Hellinga HW (2011) Rationally-designed meganucleases with altered sequence specificity and DNA-binding affinity. Google Patents

    Google Scholar 

  37. Baker M (2011) Gene-editing nucleases. Nature Publishing Group, London

    Google Scholar 

  38. Bosley KS, Botchan M, Bredenoord AL, Carroll D, Charo RA, Charpentier E, Cohen R, Corn J, Doudna J, Feng G (2015) CRISPR germline engineering—the community speaks. Nat Biotechnol 33(5):478

    Article  CAS  PubMed  Google Scholar 

  39. Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38(1):49–95

    Article  CAS  PubMed  Google Scholar 

  40. Loong SLE (2005) Late Radiation Morbidity Incidence in a South-East Scottish cohort and investigation into abnormalities in DNA double-strand break repair and damage response. Edinburgh Medical School thesis. http://hdl.handle.net/1842/24851

  41. De Souza N (2011) Primer: genome editing with engineered nucleases. Nat Methods 9(1):27

    Article  CAS  Google Scholar 

  42. Smith J, Grizot S, Arnould S, Duclert A, Epinat J-C, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149–e149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30(17):3870–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ Jr, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10(4):895–905

    Article  CAS  PubMed  Google Scholar 

  45. Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat J-C, Stricher F, Petit A-S, Patin A, Guillier S (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355(3):443–458

    Article  CAS  PubMed  Google Scholar 

  46. Ashworth J, Taylor GK, Havranek JJ, Quadri SA, Stoddard BL, Baker D (2010) Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res 38(16):5601–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Redondo P, Prieto J, Munoz IG, Alibés A, Stricher F, Serrano L, Cabaniols J-P, Daboussi F, Arnould S, Perez C (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456(7218):107

    Article  CAS  PubMed  Google Scholar 

  48. Aslam S, Khan SH, Ahmed A, Dandekar AM (2019) Genome editing tools: need of the current era. Am J Mol Biol 9(3):85–109

    Article  Google Scholar 

  49. Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC (2002) Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 8(12):1427

    Article  CAS  PubMed  Google Scholar 

  50. Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reik A, Zhou Y, Wagner J, Hamlett A, Mendel M, Liu P-Q, Lee G, Paschon D, Rebar E, Ando D (2008) Zinc finger nucleases targeting the glucocorticoid receptor allow IL-13 zetakine transgenic CTLs to kill glioblastoma cells in vivo in the presence of immunosuppressing glucocorticoids. AACR Annual Meeting, San Diego, CA

    Google Scholar 

  53. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B, Cunnac S (2013) An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 8(7):e68464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the dicer family of host immune receptors. Immunol Rev 227(1):176–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barrangou R (2015) The roles of CRISPR–Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41

    Article  CAS  PubMed  Google Scholar 

  58. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46

    Article  CAS  PubMed  Google Scholar 

  59. Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58(4):568–574

    Article  CAS  PubMed  Google Scholar 

  60. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  61. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, Van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353(6299):aad5147

    Article  PubMed  CAS  Google Scholar 

  63. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E (2018) The biology of CRISPR-Cas: backward and forward. Cell 172(6):1239–1259

    Article  CAS  PubMed  Google Scholar 

  64. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2):29–44

    Article  CAS  PubMed  Google Scholar 

  66. Westra ER, Dowling AJ, Broniewski JM, van Houte S (2016) Evolution and ecology of CRISPR. Annu Rev Ecol Evol Syst 47:307–331

    Article  Google Scholar 

  67. Dugar G, Herbig A, Förstner KU, Heidrich N, Reinhardt R, Nieselt K, Sharma CM (2013) High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9(5):e1003495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hatoum-Aslan A, Maniv I, Marraffini LA (2011) Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci 108(52):21218–21222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40(12):5569–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Swarts DC, Mosterd C, Van Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7(4):e35888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42(10):6762–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rinaldo AR, Ayliffe M (2015) Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breed 35(1):40

    Article  CAS  Google Scholar 

  73. Regalado A (2015) CRISPR gene editing to be tested on people by 2017, says Editas. MIT Technol Rev:1–3

    Google Scholar 

  74. Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 9(1):1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Charpentier M, Khedher A, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 9(1):1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550(7676):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sakuma T, Yamamoto T (2018) Acceleration of cancer science with genome editing and related technologies. Cancer Sci 109(12):3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24(7):927

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Aslam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, S., Mehmood, S. (2020). Genome Editing in Cancer Research and Cure. In: Masood, N., Shakil Malik, S. (eds) 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-1067-0_4

Download citation

Publish with us

Policies and ethics