Skip to main content

Abstract

Cancer proteomics is a diverse and challenging field. It provides the promising tool that aids in the understanding of the disease, yet early-stage diagnosis is still a question and crucial for successful treatment of cancer. Genomics aided with proteomics has emerged as a larger platform for understanding the disease spread, proliferation, metastasis, genomic aberrations, mutational changes, therapeutics, design drug delivery system, proteomic anomalies, structural changes, and signaling pathways and moving toward personalized approach. Biomarker identification and development of the panel are very precious in cancer treatment. Generally, biomarker identification, validation, and clinical examination are specific tools for accurate diagnostic, prognostic, and therapeutics. Present-day advances in proteomics and computational sciences have opened a gateway for the identification and quantitative analysis of protein variations associated with the complexities and heterogeneity of tumor development. Concept of personalized medicine is an emerging approach for cancer patient treatment, yet it has many challenges to overcome before its clinical application. Translational research in oncology still needs lots of quality research to overcome many challenges and for improvement in biomedical application and cancer patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naylor S (2003) Biomarkers: current perspectives and future prospects. Expert Rev Mol Diagn 3(5):525–5299. https://doi.org/10.1586/14737159.3.5.525

    Article  PubMed  Google Scholar 

  2. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188. https://doi.org/10.1602/neurorx.1.2.182

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3(4):267–275. https://doi.org/10.1038/nrc1043

    Article  CAS  PubMed  Google Scholar 

  4. Hudler P, Kocevar N, Komel R (2014) Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. Sci World J 2014:260348. https://doi.org/10.1155/2014/260348

    Article  CAS  Google Scholar 

  5. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146. https://doi.org/10.1016/j.molonc.2012.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Z, Chan DW (2005) Cancer proteomics: in pursuit of “true” biomarker discovery. Cancer Epidemiol Biomarkers Prev 14(10):2283–2286. https://doi.org/10.1158/1055-9965.EPI-05-0774

    Article  CAS  PubMed  Google Scholar 

  7. Srinivasan R (1986) Ablation of polymers and biological tissue by ultraviolet lasers. Science 234(4776):559–565. https://doi.org/10.1126/science.3764428

    Article  CAS  PubMed  Google Scholar 

  8. Han Y, Gu Y, Zhang AC, Lo YH (2016) Review: imaging technologies for flow cytometry. Lab Chip 16(24):4639–4647. https://doi.org/10.1039/c6lc01063f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srinivas PR, Srivastava S, Hanash S, Wright GL Jr (2001) Proteomics in early detection of cancer. Clin Chem 47(10):1901–1911

    Article  CAS  PubMed  Google Scholar 

  10. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358(5):502–511. https://doi.org/10.1056/NEJMra072367

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Blount PL, Vaughan TL, Reid BJ (2011) Application of biomarkers in cancer risk management: evaluation from stochastic clonal evolutionary and dynamic system optimization points of view. PLoS Comput Biol 7(2):e1001087. https://doi.org/10.1371/journal.pcbi.1001087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goncalves A, Esterni B, Bertucci F, Sauvan R, Chabannon C, Cubizolles M, Bardou VJ, Houvenaegel G, Jacquemier J, Granjeaud S, Meng XY, Fung ET, Birnbaum D, Maraninchi D, Viens P, Borg JP (2006) Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene 25(7):981–989. https://doi.org/10.1038/sj.onc.1209131

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Galipeau PC, Sanchez CA, Blount PL, Maley CC, Arnaudo J, Peiffer DA, Pokholok D, Gunderson KL, Reid BJ (2008) Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett’s esophagus neoplastic progression. Cancer Prev Res (Phila) 1(6):413–423. https://doi.org/10.1158/1940-6207.CAPR-08-0121

    Article  CAS  Google Scholar 

  14. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158. https://doi.org/10.1038/nature05610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baudis M (2007) Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7:226. https://doi.org/10.1186/1471-2407-7-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Litzenburger UM, Buenrostro JD, Wu B, Shen Y, Sheffield NC, Kathiria A, Greenleaf WJ, Chang HY (2017) Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol 18(1):15. https://doi.org/10.1186/s13059-016-1133-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Markowetz F, De Sousa EMF, Medema JP, Vermeulen L (2013) Dissecting cancer heterogeneity--an unsupervised classification approach. Int J Biochem Cell Biol 45(11):2574–2579. https://doi.org/10.1016/j.biocel.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  18. Gustafsson OJ, Eddes JS, Meding S, McColl SR, Oehler MK, Hoffmann P (2013) Matrix-assisted laser desorption/ionization imaging protocol for in situ characterization of tryptic peptide identity and distribution in formalin-fixed tissue. Rapid Commun Mass Spectrom 27(6):655–670. https://doi.org/10.1002/rcm.6488

    Article  CAS  PubMed  Google Scholar 

  19. Meding S, Martin K, Gustafsson OJ, Eddes JS, Hack S, Oehler MK, Hoffmann P (2013) Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues. J Proteome Res 12(1):308–315. https://doi.org/10.1021/pr300996x

    Article  CAS  PubMed  Google Scholar 

  20. Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, Hussain S, Hurley AD, Ernst C, Huang YE, Chang H, Nifong TP, Rimm DL, Dunyak J, Loda M, Berman DM, Blume-Jensen P (2014) Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer 111(6):1201–1212. https://doi.org/10.1038/bjc.2014.396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  22. Corbo C, Cevenini A, Salvatore F (2017) Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 11(5–6). https://doi.org/10.1002/prca.201600072

  23. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  24. Lee JY, Yoon JK, Kim B, Kim S, Kim MA, Lim H, Bang D, Song YS (2015) Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing. BMC Cancer 15:85. https://doi.org/10.1186/s12885-015-1077-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mabert K, Cojoc M, Peitzsch C, Kurth I, Souchelnytskyi S, Dubrovska A (2014) Cancer biomarker discovery: current status and future perspectives. Int J Radiat Biol 90(8):659–677. https://doi.org/10.3109/09553002.2014.892229

    Article  CAS  PubMed  Google Scholar 

  26. Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harb Perspect Med 5(4). https://doi.org/10.1101/cshperspect.a006098

  27. Monica L, Savu L (2013) A different approach for cellular oncogene identification came from Drosophila genetics. In: Oncogene and cancer - from bench to clinic. https://doi.org/10.5772/54150

  28. Yan H, Chen X, Li Y, Fan L, Tai Y, Zhou Y, Chen Y, Qi X, Huang R, Ren J (2019) MiR-1205 functions as a tumor suppressor by disconnecting the synergy between KRAS and MDM4/E2F1 in non-small cell lung cancer. Vaccine 9(2):312–329

    CAS  Google Scholar 

  29. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34(4):369–376. https://doi.org/10.1038/ng1215

    Article  CAS  PubMed  Google Scholar 

  30. Sauter ER (2017) Exosomes in blood and cancer. Transl Cancer Res 6(S8):S1316–S1320. https://doi.org/10.21037/tcr.2017.08.13

    Article  CAS  Google Scholar 

  31. Aaltonen L, Johns L, Jarvinen H, Mecklin JP, Houlston R (2007) Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 13(1):356–361. https://doi.org/10.1158/1078-0432.CCR-06-1256

    Article  CAS  PubMed  Google Scholar 

  32. Walker JG, Licqurish S, Chiang PP, Pirotta M, Emery JD (2015) Cancer risk assessment tools in primary care: a systematic review of randomized controlled trials. Ann Fam Med 13(5):480–489. https://doi.org/10.1370/afm.1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yarnall JM, Crouch DJ, Lewis CM (2013) Incorporating non-genetic risk factors and behavioural modifications into risk prediction models for colorectal cancer. Cancer Epidemiol 37(3):324–329. https://doi.org/10.1016/j.canep.2012.12.008

    Article  PubMed  Google Scholar 

  34. Services USDoHaH (2014) The Colorectal Cancer Risk Assessment Tool. National Institutes of Health

    Google Scholar 

  35. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81(24):1879–1886. https://doi.org/10.1093/jnci/81.24.1879

    Article  CAS  PubMed  Google Scholar 

  36. Wang W, Niendorf KB, Patel D, Blackford A, Marroni F, Sober AJ, Parmigiani G, Tsao H (2010) Estimating CDKN2A carrier probability and personalizing cancer risk assessments in hereditary melanoma using MelaPRO. Cancer Res 70(2):552–559. https://doi.org/10.1158/0008-5472.CAN-09-2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilson KE, Ryan MM, Prime JE, Pashby DP, Orange PR, O’Beirne G, Whateley JG, Bahn S, Morris CM (2004) Functional genomics and proteomics: application in neurosciences. J Neurol Neurosurg Psychiatry 75(4):529–538. https://doi.org/10.1136/jnnp.2003.026260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kellner R (2000) Proteomics. Concepts and perspectives. Fresenius J Anal Chem 366:517–524

    Article  CAS  PubMed  Google Scholar 

  39. Klein JB, Thongboonkerd V (2004) Overview of proteomics. Contrib Nephrol 141:1–10

    CAS  PubMed  Google Scholar 

  40. Ullrich B, Ushkaryov YA, Südhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14(3)

    Google Scholar 

  41. Shruthi BS, Vinodhkumar P, Selvamani (2016) Proteomics: a new perspective for cancer. Adv Biomed Res 5:67. https://doi.org/10.4103/2277-9175.180636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carr KM, Rosenblatt K, Petricoin EF, Liotta LA (2004) Genomic and proteomic approaches for studying human cancer: prospects for true patient-tailored therapy. Hum Genomics 1(2):134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vaezzadeh AR, Steen H, Freeman MR, Lee RS (2009) Proteomics and opportunities for clinical translation in urological disease. J Urol 182(3):835–843. https://doi.org/10.1016/j.juro.2009.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liotta LA, Kohn EC, Petricoin EF (2001) Clinical proteomics. JAMA 286(18). https://doi.org/10.1001/jama.286.18.2211

  45. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577. https://doi.org/10.1016/s0140-6736(02)07746-2

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48(8):1296–1304

    Article  CAS  PubMed  Google Scholar 

  47. Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL Jr (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62(13):3609–3614

    CAS  PubMed  Google Scholar 

  48. Poon TC, Yip TT, Chan AT, Yip C, Yip V, Mok TS, Lee CC, Leung TW, Ho SK, Johnson PJ (2003) Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem 49(5):752–760

    Article  CAS  PubMed  Google Scholar 

  49. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  50. Sung HJ, Cho JY (2008) Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep 41(9):615–625. https://doi.org/10.5483/bmbrep.2008.41.9.615

    Article  CAS  PubMed  Google Scholar 

  51. Luo L, Dong LY, Yan QG, Cao SJ, Wen XT, Huang Y, Huang XB, Wu R, Ma XP (2014) Research progress in applying proteomics technology to explore early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer. Asian Pac J Cancer Prev 15(20):8529–8538. https://doi.org/10.7314/apjcp.2014.15.20.8529

    Article  PubMed  Google Scholar 

  52. Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG, Hanash SM (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci U S A 98(17):9824–9829. https://doi.org/10.1073/pnas.171320598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zamay TN, Zamay GS, Kolovskaya OS, Zukov RA, Petrova MM, Gargaun A, Berezovski MV, Kichkailo AS (2017) Current and prospective protein biomarkers of lung cancer. Cancers (Basel) 9(11). https://doi.org/10.3390/cancers9110155

  54. Taguchi A, Politi K, Pitteri SJ, Lockwood WW, Faca VM, Kelly-Spratt K, Wong CH, Zhang Q, Chin A, Park KS, Goodman G, Gazdar AF, Sage J, Dinulescu DM, Kucherlapati R, Depinho RA, Kemp CJ, Varmus HE, Hanash SM (2011) Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell 20(3):289–299. https://doi.org/10.1016/j.ccr.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patz EF Jr, Campa MJ, Gottlin EB, Kusmartseva I, Guan XR, Herndon JE 2nd (2007) Panel of serum biomarkers for the diagnosis of lung cancer. J Clin Oncol 25(35):5578–5583. https://doi.org/10.1200/JCO.2007.13.5392

    Article  PubMed  Google Scholar 

  56. Cheung CHY, Juan HF (2017) Quantitative proteomics in lung cancer. J Biomed Sci 24(1):37. https://doi.org/10.1186/s12929-017-0343-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu CC, Chien KY, Tsang NM, Chang KP, Hao SP, Tsao CH, Chang YS, Yu JS (2005) Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics 5(12):3173–3182. https://doi.org/10.1002/pmic.200401133

    Article  CAS  PubMed  Google Scholar 

  58. Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR, Ward RL, Hawkins NJ, Quinn DI, Russell PJ, Sutherland RL, Breit SN, Moskaluk CA, Frierson HF Jr, Hampton GM (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci U S A 100(6):3410–3415. https://doi.org/10.1073/pnas.0530278100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang LJ, Chen SX, Huang Y, Luo WJ, Jiang HH, Hu QH, Zhang PF, Yi H (2006) Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung Cancer 54(1):87–94. https://doi.org/10.1016/j.lungcan.2006.06.011

    Article  PubMed  Google Scholar 

  60. Conrad DH, Goyette J, Thomas PS (2008) Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 23(Suppl 1):78–84. https://doi.org/10.1007/s11606-007-0411-1

    Article  PubMed  Google Scholar 

  61. Polanski M, Anderson NL (2007) A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights 1:1–48

    PubMed  PubMed Central  Google Scholar 

  62. Sallam RM (2015) Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers 2015:321370. https://doi.org/10.1155/2015/321370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Geiger T, Madden SF, Gallagher WM, Cox J, Mann M (2012) Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res 72(9):2428–2439. https://doi.org/10.1158/0008-5472.CAN-11-3711

    Article  CAS  PubMed  Google Scholar 

  64. Pitteri SJ, Kelly-Spratt KS, Gurley KE, Kennedy J, Buson TB, Chin A, Wang H, Zhang Q, Wong CH, Chodosh LA, Nelson PS, Hanash SM, Kemp CJ (2011) Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 71(15):5090–5100. https://doi.org/10.1158/0008-5472.CAN-11-0568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luftner D, Possinger K (2002) Nuclear matrix proteins as biomarkers for breast cancer. Expert Rev Mol Diagn 2(1):23–31. https://doi.org/10.1586/14737159.2.1.23

    Article  CAS  PubMed  Google Scholar 

  66. Samadder NJ, Jasperson K, Burt RW (2015) Hereditary and common familial colorectal cancer: evidence for colorectal screening. Dig Dis Sci 60(3):734–747. https://doi.org/10.1007/s10620-014-3465-z

    Article  CAS  PubMed  Google Scholar 

  67. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa EMF, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356. https://doi.org/10.1038/nm.3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chauvin A, Boisvert FM (2018) Clinical proteomics in colorectal cancer, a promising tool for improving personalised medicine. Proteomes 6(4). https://doi.org/10.3390/proteomes6040049

  69. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJ, Carr SA, Tabb DL, Coffey RJ, Slebos RJ, Liebler DC, Nci C (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513(7518):382–387. https://doi.org/10.1038/nature13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dobbin KK, Cesano A, Alvarez J, Hawtin R, Janetzki S, Kirsch I, Masucci GV, Robbins PB, Selvan SR, Streicher HZ, Zhang J, Butterfield LH, Thurin M (2016) Validation of biomarkers to predict response to immunotherapy in cancer: volume II - clinical validation and regulatory considerations. J Immunother Cancer 4:77. https://doi.org/10.1186/s40425-016-0179-0

    Article  PubMed  PubMed Central  Google Scholar 

  71. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S, Bardelli A (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26(35):5705–5712. https://doi.org/10.1200/JCO.2008.18.0786

    Article  CAS  PubMed  Google Scholar 

  72. Takano M, Sugiyama T (2017) UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med 10:61–68. https://doi.org/10.2147/PGPM.S108656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mischak H, Ioannidis JP, Argiles A, Attwood TK, Bongcam-Rudloff E, Broenstrup M, Charonis A, Chrousos GP, Delles C, Dominiczak A, Dylag T, Ehrich J, Egido J, Findeisen P, Jankowski J, Johnson RW, Julien BA, Lankisch T, Leung HY, Maahs D, Magni F, Manns MP, Manolis E, Mayer G, Navis G, Novak J, Ortiz A, Persson F, Peter K, Riese HH, Rossing P, Sattar N, Spasovski G, Thongboonkerd V, Vanholder R, Schanstra JP, Vlahou A (2012) Implementation of proteomic biomarkers: making it work. Eur J Clin Invest 42(9):1027–1036. https://doi.org/10.1111/j.1365-2362.2012.02674.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jennings L, Van Deerlin VM, Gulley ML, College of American Pathologists Molecular Pathology Resource C (2009) Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med 133(5):743–755. https://doi.org/10.1043/1543-2165-133.5.743

    Article  PubMed  Google Scholar 

  75. Duffy MJ, O’Donovan N, Crown J (2011) Use of molecular markers for predicting therapy response in cancer patients. Cancer Treat Rev 37(2):151–159. https://doi.org/10.1016/j.ctrv.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  76. Hoffman RM (2011) Clinical practice. Screening for prostate cancer. N Engl J Med 365(21):2013–2019. https://doi.org/10.1056/NEJMcp1103642

    Article  CAS  PubMed  Google Scholar 

  77. Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, Mehra R, Montie JE, Pienta KJ, Sanda MG, Kantoff PW, Rubin MA, Wei JT, Ghosh D, Chinnaiyan AM (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353(12):1224–1235. https://doi.org/10.1056/NEJMoa051931

    Article  CAS  PubMed  Google Scholar 

  78. Ornstein DK, Gillespie JW, Paweletz CP, Duray PH, Herring J, Vocke CD, Topalian SL, Bostwick DG, Linehan WM, Petricoin EF, Emmert-Buck MR (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21(11):2235–2242. https://doi.org/10.1002/1522-2683(20000601)21:11<2235::Aid-elps2235>3.0.Co;2-a

    Article  CAS  PubMed  Google Scholar 

  79. Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA, Conrads TP, Veenstra TD, Krizman DB (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4(11):1741–1753. https://doi.org/10.1074/mcp.M500102-MCP200

    Article  CAS  PubMed  Google Scholar 

  80. Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, van der Kwast T, Mizokami A, Morrissey C, Jarvi K, Diamandis EP (2013) Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol Cell Proteomics 12(6):1589–1601. https://doi.org/10.1074/mcp.M112.023887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cho WC (2014) Proteomics in translational cancer research: biomarker discovery for clinical applications. Expert Rev Proteomics 11(2):131–133. https://doi.org/10.1586/14789450.2014.899908

    Article  CAS  PubMed  Google Scholar 

  82. He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF (2004) Diverse proteomic alterations in gastric adenocarcinoma. Proteomics 4(10):3276–3287. https://doi.org/10.1002/pmic.200300916

    Article  CAS  PubMed  Google Scholar 

  83. Altieri F, Di Stadio CS, Severino V, Sandomenico A, Minopoli G, Miselli G, Di Maro A, Ruvo M, Chambery A, Quagliariello V, Masullo M, Rippa E, Arcari P (2014) Anti-amyloidogenic property of human gastrokine 1. Biochimie 106:91–100. https://doi.org/10.1016/j.biochi.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  84. Menheniott TR, Peterson AJ, O’Connor L, Lee KS, Kalantzis A, Kondova I, Bontrop RE, Bell KM, Giraud AS (2010) A novel gastrokine, Gkn3, marks gastric atrophy and shows evidence of adaptive gene loss in humans. Gastroenterology 138(5):1823–1835. https://doi.org/10.1053/j.gastro.2010.01.050

    Article  CAS  PubMed  Google Scholar 

  85. Lin LL, Huang HC, Juan HF (2012) Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics 75(11):3081–3097. https://doi.org/10.1016/j.jprot.2012.03.046

    Article  CAS  PubMed  Google Scholar 

  86. Jang JSJ, Cho HY, Lee YJ, Ha WS, Kim HW (2004) The differential proteome profile of stomach cancer: identification of the biomarker candidates. Oncol Res Featuring Preclin Clin Cancer Ther 14(10):491–499. https://doi.org/10.3727/0965040042380441

    Article  CAS  Google Scholar 

  87. Melle C, Ernst G, Schimmel B, Bleul A, Kaufmann R, Hommann M, Richter KK, Daffner W, Settmacher U, Claussen U, von Eggeling F (2005) Characterization of pepsinogen C as a potential biomarker for gastric cancer using a histo-proteomic approach. J Proteome Res 4(5):1799–1804. https://doi.org/10.1021/pr050123o

    Article  CAS  PubMed  Google Scholar 

  88. Hao Y, Yu Y, Wang L, Yan M, Ji J, Qu Y, Zhang J, Liu B, Zhu Z (2008) IPO-38 is identified as a novel serum biomarker of gastric cancer based on clinical proteomics technology. J Proteome Res 7(9):3668–3677. https://doi.org/10.1021/pr700638k

    Article  CAS  PubMed  Google Scholar 

  89. Di Bisceglie AM, Sterling RK, Chung RT, Everhart JE, Dienstag JL, Bonkovsky HL, Wright EC, Everson GT, Lindsay KL, Lok ASF, Lee WM, Morgan TR, Ghany MG, Gretch DR, the H-CTG (2005) Serum alpha-fetoprotein levels in patients with advanced hepatitis C: results from the HALT-C Trial. J Hepatol 43(3):434–441. https://doi.org/10.1016/j.jhep.2005.03.019

    Article  CAS  PubMed  Google Scholar 

  90. Liebman HA, Furie BC, Tong MJ, Blanchard RA, Lo KJ, Lee SD, Coleman MS, Furie B (1984) Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med 310(22):1427–1431. https://doi.org/10.1056/NEJM198405313102204

    Article  CAS  PubMed  Google Scholar 

  91. Di Tommaso L, Franchi G, Park YN, Fiamengo B, Destro A, Morenghi E, Montorsi M, Torzilli G, Tommasini M, Terracciano L, Tornillo L, Vecchione R, Roncalli M (2007) Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 45(3):725–734. https://doi.org/10.1002/hep.21531

    Article  CAS  PubMed  Google Scholar 

  92. Wu Z, Pang W, Coghill GM (2015) An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems. Soft Comput 19(6):1595–1610. https://doi.org/10.1007/s00500-014-1467-6

    Article  PubMed  Google Scholar 

  93. Megger DA, Naboulsi W, Meyer HE, Sitek B (2014) Proteome analyses of hepatocellular carcinoma. J Clin Transl Hepatol 2(1):23–30. https://doi.org/10.14218/JCTH.2013.00022

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yokoo H, Kondo T, Fujii K, Yamada T, Todo S, Hirohashi S (2004) Proteomic signature corresponding to alpha fetoprotein expression in liver cancer cells. Hepatology 40(3):609–617. https://doi.org/10.1002/hep.20372

    Article  CAS  PubMed  Google Scholar 

  95. Fu WM, Zhang JF, Wang H, Tan HS, Wang WM, Chen SC, Zhu X, Chan TM, Tse CM, Leung KS, Lu G, Xu HX, Kung HF (2012) Apoptosis induced by 1,3,6,7-tetrahydroxyxanthone in Hepatocellular carcinoma and proteomic analysis. Apoptosis 17(8):842–851. https://doi.org/10.1007/s10495-012-0729-y

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, Niu D, Sui J, Ching CB, Chen WN (2009) Protein profile in hepatitis B virus replicating rat primary hepatocytes and HepG2 cells by iTRAQ-coupled 2-D LC-MS/MS analysis: insights on liver angiogenesis. Proteomics 9(10):2836–2845. https://doi.org/10.1002/pmic.200800911

    Article  CAS  PubMed  Google Scholar 

  97. Albrethsen J, Miller LM, Novikoff PM, Angeletti RH (2011) Gel-based proteomics of liver cancer progression in rat. Biochim Biophys Acta 1814(10):1367–1376. https://doi.org/10.1016/j.bbapap.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  98. Jain KK (2008) Innovations, challenges and future prospects of oncoproteomics. Mol Oncol 2(2):153–160. https://doi.org/10.1016/j.molonc.2008.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  99. Braoudaki M, Lambrou GI, Vougas K, Karamolegou K, Tsangaris GT, Tzortzatou-Stathopoulou F (2013) Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol 6:52. https://doi.org/10.1186/1756-8722-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prada-Arismendy J, Arroyave JC, Rothlisberger S (2017) Molecular biomarkers in acute myeloid leukemia. Blood Rev 31(1):63–76. https://doi.org/10.1016/j.blre.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  101. Hjelle SM, Forthun RB, Haaland I, Reikvam H, Sjoholt G, Bruserud O, Gjertsen BT (2010) Clinical proteomics of myeloid leukemia. Genome Med 2(6):41. https://doi.org/10.1186/gm162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lopez-Pedrera C, Villalba JM, Siendones E, Barbarroja N, Gomez-Diaz C, Rodriguez-Ariza A, Buendia P, Torres A, Velasco F (2006) Proteomic analysis of acute myeloid leukemia: identification of potential early biomarkers and therapeutic targets. Proteomics 6(Suppl 1):S293–S299. https://doi.org/10.1002/pmic.200500384

    Article  PubMed  Google Scholar 

  103. Voss T, Ahorn H, Haberl P, Döhner H, Wilgenbus K (2001) Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Int J Cancer 91(2):180–186. https://doi.org/10.1002/1097-0215(200002)9999:9999<::Aid-ijc1037>3.0.Co;2-j

    Article  CAS  PubMed  Google Scholar 

  104. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A, Erpelinck-Verschueren CAJ, Gradowska PL, Meijer R, Cloos J, Biemond BJ, Graux C, van Marwijk Kooy M, Manz MG, Pabst T, Passweg JR, Havelange V, Ossenkoppele GJ, Sanders MA, Schuurhuis GJ, Lowenberg B, Valk PJM (2018) Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378(13):1189–1199. https://doi.org/10.1056/NEJMoa1716863

    Article  CAS  PubMed  Google Scholar 

  105. Bai J, He A, Huang C, Yang J, Zhang W, Wang J, Yang Y, Zhang P, Zhang Y, Zhou F (2014) Serum peptidome based biomarkers searching for monitoring minimal residual disease in adult acute lymphocytic leukemia. Proteome Sci 12(1):49. https://doi.org/10.1186/s12953-014-0049-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Odreman F, Vindigni M, Gonzales ML, Niccolini B, Candiano G, Zanotti B, Skrap M, Pizzolitto S, Stanta G, Vindigni A (2005) Proteomic studies on low- and high-grade human brain astrocytomas. J Proteome Res 4(3):698–708. https://doi.org/10.1021/pr0498180

    Article  CAS  PubMed  Google Scholar 

  107. Hu Y, Huang X, Chen GYJ, Yao SQ (2004) Recent advances in gel-based proteome profiling techniques. Mol Biotechnol 28(1):63–76. https://doi.org/10.1385/mb:28:1:63

    Article  CAS  PubMed  Google Scholar 

  108. Iwadate Y, Sakaida T, Hiwasa T, Nagai Y, Ishikura H, Takiguchi M, Yamaura A (2004) Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64(7):2496–2501. https://doi.org/10.1158/0008-5472.CAN-03-1254

    Article  CAS  PubMed  Google Scholar 

  109. Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201. https://doi.org/10.1021/ac0498563

    Article  CAS  PubMed  Google Scholar 

  110. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. https://doi.org/10.1074/mcp.M400129-MCP200

    Article  CAS  PubMed  Google Scholar 

  111. Jacobs IJ, Skates SJ, MacDonald N, Menon U, Rosenthal AN, Davies AP, Woolas R, Jeyarajah AR, Sibley K, Lowe DG, Oram DH (1999) Screening for ovarian cancer: a pilot randomised controlled trial. Lancet 353(9160):1207–1210. https://doi.org/10.1016/s0140-6736(98)10261-1

    Article  CAS  PubMed  Google Scholar 

  112. Cohen LS, Escobar PF, Scharm C, Glimco B, Fishman DA (2001) Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol Oncol 82(1):40–48. https://doi.org/10.1006/gyno.2001.6253

    Article  CAS  PubMed  Google Scholar 

  113. Conrads TP, Zhou M, Petricoin EF III, Liotta L, Veenstra TD (2003) Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn 3(4):411–420

    Article  CAS  PubMed  Google Scholar 

  114. Plebani M (2005) Proteomics: the next revolution in laboratory medicine? Clin Chim Acta 357(2):113–122. https://doi.org/10.1016/j.cccn.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  115. Diamandis EP (2003) Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 49(8):1272–1275. https://doi.org/10.1373/49.8.1272

    Article  CAS  PubMed  Google Scholar 

  116. Lin YW, Lin CY, Lai HC, Chiou JY, Chang CC, Yu MH, Chu TY (2006) Plasma proteomic pattern as biomarkers for ovarian cancer. Int J Gynecol Cancer 16(Suppl 1):139–146. https://doi.org/10.1111/j.1525-1438.2006.00475.x

    Article  PubMed  Google Scholar 

  117. Petricoin E (2003) The vision for a new diagnostic paradigm. Clin Chem 49(8):1276–1278. https://doi.org/10.1373/49.8.1276

    Article  CAS  PubMed  Google Scholar 

  118. Green CL, Khavari PA (2004) Targets for molecular therapy of skin cancer. Semin Cancer Biol 14(1):63–69. https://doi.org/10.1016/j.semcancer.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  119. Kasparian NA, McLoone JK, Meiser B (2009) Skin cancer-related prevention and screening behaviors: a review of the literature. J Behav Med 32(5):406–428. https://doi.org/10.1007/s10865-009-9219-2

    Article  PubMed  Google Scholar 

  120. Franssen ME, Zeeuwen PL, Vierwinden G, van de Kerkhof PC, Schalkwijk J, van Erp PE (2005) Phenotypical and functional differences in germinative subpopulations derived from normal and psoriatic epidermis. J Invest Dermatol 124(2):373–383. https://doi.org/10.1111/j.0022-202X.2004.23612.x

    Article  CAS  PubMed  Google Scholar 

  121. Huang CM, Foster KW, DeSilva T, Zhang J, Shi Z, Yusuf N, Van Kampen KR, Elmets CA, Tang DC (2003) Comparative proteomic profiling of murine skin. J Invest Dermatol 121(1):51–64. https://doi.org/10.1046/j.1523-1747.2003.12327.x

    Article  CAS  PubMed  Google Scholar 

  122. Hamideh MF, Hakimeh Z, Mostafa RT, Parviz T (2010) Roteomic analysis of gene expression in basal cell carcinoma. Iran J Dermatol 13(4):112–117

    Google Scholar 

  123. Cheng SL, Liu RH, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ (2007) Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J Biomed Sci 14(1):87–105. https://doi.org/10.1007/s11373-006-9130-6

    Article  CAS  PubMed  Google Scholar 

  124. Penque D (2009) Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin Appl 3(2):155–172. https://doi.org/10.1002/prca.200800025

    Article  CAS  PubMed  Google Scholar 

  125. Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GB, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5(13):3262–3277. https://doi.org/10.1002/pmic.200401245

    Article  CAS  PubMed  Google Scholar 

  126. Aebersold R, Burlingame AL, Bradshaw RA (2013) Western blots versus selected reaction monitoring assays: time to turn the tables? Mol Cell Proteomics 12(9):2381–2382. https://doi.org/10.1074/mcp.E113.031658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Elschenbroich S, Ignatchenko V, Clarke B, Kalloger SE, Boutros PC, Gramolini AO, Shaw P, Jurisica I, Kislinger T (2011) In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry. J Proteome Res 10(5):2286–2299. https://doi.org/10.1021/pr1011087

    Article  CAS  PubMed  Google Scholar 

  128. Anderson NL, Matheson AD, Steiner S (2000) Proteomics: applications in basic and applied biology. Curr Opin Biotechnol 11(4):408–412. https://doi.org/10.1016/s0958-1669(00)00118-x

    Article  CAS  PubMed  Google Scholar 

  129. Welch DR, McClure SA, Aeed PA, Bahner MJ, Adams LD (1990) Tumor progression- and metastasis-associated proteins identified using a model of locally recurrent rat mammary adenocarcinomas. Clin Exp Metastasis 8(6):533–551. https://doi.org/10.1007/bf00135876

    Article  CAS  PubMed  Google Scholar 

  130. Sarto C, Marocchi A, Sanchez JC, Giannone D, Frutiger S, Golaz O, Wilkins MR, Doro G, Cappellano F, Hughes G, Hochstrasser DF, Mocarelli P (1997) Renal cell carcinoma and normal kidney protein expression. Electrophoresis 18(3–4):599–604. https://doi.org/10.1002/elps.1150180343

    Article  CAS  PubMed  Google Scholar 

  131. Alaiya AA, Franzén B, Fujioka K, Moberger B, Schedvins K, Silfversvärd C, Linder S, Auer G (1997) Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors. Int J Cancer 73(5):678–682. https://doi.org/10.1002/(sici)1097-0215(19971127)73:5<678::Aid-ijc11>3.0.Co;2-2

    Article  CAS  PubMed  Google Scholar 

  132. Franzen B, Linder S, Uryu K, Alaiya AA, Hirano T, Kato H, Auer G (1996) Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br J Cancer 73(7):909–913. https://doi.org/10.1038/bjc.1996.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7(4):493–496. https://doi.org/10.1038/86573

    Article  CAS  PubMed  Google Scholar 

  134. Bergman A-C, Benjamin T, Alaiya A, Waltham M, Sakaguchi K, Franzén B, Linder S, Bergman T, Auer G, Appella E, Wirth PJ, Jörnvall H (2000) Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis 21(3):679–686. https://doi.org/10.1002/(sici)1522-2683(20000201)21:3<679::Aid-elps679>3.0.Co;2-a

    Article  CAS  PubMed  Google Scholar 

  135. Wright GL Jr, Cazares LH, Leung SM, Nasim S, Adam BL, Yip TT, Schellhammer PF, Gong L, Vlahou A (1999) Proteinchip(R) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis 2(5-6):264–276. https://doi.org/10.1038/sj.pcan.4500384

    Article  CAS  PubMed  Google Scholar 

  136. Paweletz CP, Gillespie JW, Ornstein DK, Simone NL, Brown MR, Cole KA, Wang Q-H, Huang J, Hu N, Yip T-T, Rich WE, Kohn EC, Linehan WM, Weber T, Taylor P, Emmert-Buck MR, Liotta LA, Petricoin EF (2000) Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip. Drug Dev Res 49(1):34–42. https://doi.org/10.1002/(sici)1098-2299(200001)49:1<34::Aid-ddr6>3.0.Co;2-w

    Article  CAS  Google Scholar 

  137. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 9(6):394–408. https://doi.org/10.2174/138920208785699580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cho WC (2007) Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 6:25. https://doi.org/10.1186/1476-4598-6-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5(10):1799–1810. https://doi.org/10.1074/mcp.R600009-MCP200

    Article  CAS  PubMed  Google Scholar 

  140. Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10(9):618–629. https://doi.org/10.1038/nrc2900

    Article  CAS  PubMed  Google Scholar 

  141. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024. https://doi.org/10.1056/NEJMoa051918

    Article  CAS  PubMed  Google Scholar 

  142. Darie CC (2013) Mass spectrometry and proteomics: principle, workflow, challenges and perspectives. Mod Chem Appl 01(02). https://doi.org/10.4172/2329-6798.1000e105

  143. Swaney DL, Villen J (2016) Proteomic analysis of protein posttranslational modifications by mass spectrometry. Cold Spring Harb Protoc 2016 (3):pdb top077743. https://doi.org/10.1101/pdb.top077743

  144. Tainsky MA (2009) Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta 1796(2):176–193. https://doi.org/10.1016/j.bbcan.2009.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197. https://doi.org/10.1038/nature01510

    Article  CAS  PubMed  Google Scholar 

  146. Gulati S, Cheng TM, Bates PA (2013) Cancer networks and beyond: interpreting mutations using the human interactome and protein structure. Semin Cancer Biol 23(4):219–226. https://doi.org/10.1016/j.semcancer.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  147. Aebersold R, Cravatt BF (2002) Proteomics – advances, applications and the challenges that remain. Trends Biotechnol 20(12):s1–s2. https://doi.org/10.1016/s1471-1931(02)00206-9

    Article  CAS  PubMed  Google Scholar 

  148. Davalieva K, Polenakovic M (2015) Proteomics in diagnosis of prostate cancer. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 36(1):5–36

    CAS  Google Scholar 

  149. Faria SS, Morris CF, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W (2017) A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front Oncol 7:13. https://doi.org/10.3389/fonc.2017.00013

    Article  PubMed  PubMed Central  Google Scholar 

  150. Clauser KR, Hall SC, Smith DM, Webb JW, Andrews LE, Tran HM, Epstein LB, Burlingame AL (1995) Rapid mass spectrometric peptide sequencing and mass matching for characterization of human melanoma proteins isolated by two-dimensional PAGE. Proc Natl Acad Sci U S A 92(11):5072–5076. https://doi.org/10.1073/pnas.92.11.5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ang CS, Rothacker J, Patsiouras H, Gibbs P, Burgess AW, Nice EC (2011) Use of multiple reaction monitoring for multiplex analysis of colorectal cancer-associated proteins in human feces. Electrophoresis 32(15):1926–1938. https://doi.org/10.1002/elps.201000502

    Article  CAS  PubMed  Google Scholar 

  152. Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P (2015) The discovery of novel biomarkers improves breast cancer intrinsic subtype prediction and reconciles the labels in the METABRIC data set. PLoS One 10(7):e0129711. https://doi.org/10.1371/journal.pone.0129711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen J, Wu W, Chen L, Zhou H, Yang R, Hu L, Zhao Y (2013) Profiling the potential tumor markers of pancreatic ductal adenocarcinoma using 2D-DIGE and MALDI-TOF-MS: up-regulation of Complement C3 and alpha-2-HS-glycoprotein. Pancreatology 13(3):290–297. https://doi.org/10.1016/j.pan.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  154. Guo L, Zhang C, Zhu J, Yang Y, Lan J, Su G, Xie X (2016) Proteomic identification of predictive tissue biomarkers of sensitive to neoadjuvant chemotherapy in squamous cervical cancer. Life Sci 151:102–108. https://doi.org/10.1016/j.lfs.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  155. Mesri M (2014) Advances in proteomic technologies and its contribution to the field of cancer. Adv Med 2014:238045. https://doi.org/10.1155/2014/238045

    Article  PubMed  PubMed Central  Google Scholar 

  156. Milioli HH, Santos Sousa K, Kaviski R, Dos Santos Oliveira NC, De Andrade Urban C, De Lima RS, Cavalli IJ, De Souza Fonseca Ribeiro EM (2015) Comparative proteomics of primary breast carcinomas and lymph node metastases outlining markers of tumor invasion. Cancer Genomics Proteomics 12(2):89–101

    CAS  PubMed  Google Scholar 

  157. Longsworth LG, Shedlovsky T, Macinnes DA (1939) Electrophoretic patterns of normal and pathological human blood serum and plasma. J Exp Med 70(4):399–413. https://doi.org/10.1084/jem.70.4.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Di Girolamo F, Del Chierico F, Caenaro G, Lante I, Muraca M, Putignani L (2012) Human serum proteome analysis: new source of markers in metabolic disorders. Biomark Med 6(6):759–773. https://doi.org/10.2217/bmm.12.92

    Article  CAS  PubMed  Google Scholar 

  159. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    PubMed  Google Scholar 

  160. Norbeck J, Blomberg A (1997) Two-dimensional electrophoretic separation of yeast proteins using a non-linear wide range (pH 3–10) immobilized pH gradient in the first dimension; reproducibility and evidence for isoelectric focusing of alkaline (pI >7) proteins. Yeast 13(16):1519–1534. https://doi.org/10.1002/(sici)1097-0061(199712)13:16<1519::Aid-yea211>3.0.Co;2-u

    Article  CAS  PubMed  Google Scholar 

  161. Doustjalali SR, Yusof R, Govindasamy GK, Bustam AZ, Pillay B, Hashim OH (2006) Patients with nasopharyngeal carcinoma demonstrate enhanced serum and tissue ceruloplasmin expression. J Med Invest 53(1,2):20–28. https://doi.org/10.2152/jmi.53.20

    Article  PubMed  Google Scholar 

  162. Oestergaard M, Wolf H, Oerntoft TF, Celis JE (1999) Psoriasin (S100A7): a putative urinary marker for the follow-up of patients with bladder squamous cell carcinomas. Electrophoresis 20(2):349–354. https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<349::Aid-elps349>3.0.Co;2-b

    Article  CAS  Google Scholar 

  163. Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleißner K-P, Otto A, Müller E-C, Sokolowska-Köhler W, Grabher G, Stöffler G (1999) Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20(10):2100–2110. https://doi.org/10.1002/(sici)1522-2683(19990701)20:10<2100::Aid-elps2100>3.0.Co;2-d

    Article  CAS  PubMed  Google Scholar 

  164. Chevalier F (2010) Highlights on the capacities of “Gel-based” proteomics. Proteome Sci 8:23. https://doi.org/10.1186/1477-5956-8-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077. https://doi.org/10.1002/elps.1150181133

    Article  CAS  PubMed  Google Scholar 

  166. Zhang B, Barekati Z, Kohler C, Radpour R, Asadollahi R, Holzgreve W, Zhong XY (2010) Proteomics and biomarkers for ovarian cancer diagnosis. Ann Clin Lab Sci 40(3):218–225

    PubMed  Google Scholar 

  167. Karp NA, Feret R, Rubtsov DV, Lilley KS (2008) Comparison of DIGE and post-stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics 8(5):948–960. https://doi.org/10.1002/pmic.200700812

    Article  CAS  PubMed  Google Scholar 

  168. Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, Timms JF (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1(2):91–98. https://doi.org/10.1074/mcp.t100007-mcp200

    Article  CAS  PubMed  Google Scholar 

  169. Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5(4):240–251. https://doi.org/10.1159/000071076

    Article  CAS  PubMed  Google Scholar 

  170. Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3(7):1181–1195. https://doi.org/10.1002/pmic.200300439

    Article  CAS  PubMed  Google Scholar 

  171. Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF, Zhao Y (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1(2):117–123. https://doi.org/10.1074/mcp.M100015-MCP200

    Article  CAS  PubMed  Google Scholar 

  172. Govorun VM, Archakov AI (2002) Proteomic technologies in modern biomedical science. Biochemistry (Mosc) 67(10):1109–1123

    Article  CAS  Google Scholar 

  173. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683. https://doi.org/10.1038/nrd891

    Article  CAS  PubMed  Google Scholar 

  174. Chen EI, Yates JR 3rd (2007) Cancer proteomics by quantitative shotgun proteomics. Mol Oncol 1(2):144–159. https://doi.org/10.1016/j.molonc.2007.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bouwman K, Qiu J, Zhou H, Schotanus M, Mangold LA, Vogt R, Erlandson E, Trenkle J, Partin AW, Misek D, Omenn GS, Haab BB, Hanash S (2003) Microarrays of tumor cell derived proteins uncover a distinct pattern of prostate cancer serum immunoreactivity. Proteomics 3(11):2200–2207. https://doi.org/10.1002/pmic.200300611

    Article  CAS  PubMed  Google Scholar 

  176. Charboneau L, Tory H, Chen T, Winters M, Petricoin EF 3rd, Liotta LA, Paweletz CP (2002) Utility of reverse phase protein arrays: applications to signalling pathways and human body arrays. Brief Funct Genomic Proteomic 1(3):305–315

    Article  CAS  PubMed  Google Scholar 

  177. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, Aquino J, Speer R, Araujo R, Mills GB, Liotta LA, Petricoin EF 3rd, Wulfkuhle JD (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4(4):346–355. https://doi.org/10.1074/mcp.T500003-MCP200

    Article  CAS  PubMed  Google Scholar 

  178. Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA, Petricoin EF 3rd (2003) Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3(11):2085–2090. https://doi.org/10.1002/pmic.200300591

    Article  CAS  PubMed  Google Scholar 

  179. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin IE, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20(16):1981–1989. https://doi.org/10.1038/sj.onc.1204265

    Article  CAS  PubMed  Google Scholar 

  180. Pereira-Faca SR, Kuick R, Puravs E, Zhang Q, Krasnoselsky AL, Phanstiel D, Qiu J, Misek DE, Hinderer R, Tammemagi M, Landi MT, Caporaso N, Pfeiffer R, Edelstein C, Goodman G, Barnett M, Thornquist M, Brenner D, Hanash SM (2007) Identification of 14-3-3 theta as an antigen that induces a humoral response in lung cancer. Cancer Res 67(24):12000–12006. https://doi.org/10.1158/0008-5472.CAN-07-2913

    Article  CAS  PubMed  Google Scholar 

  181. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588. https://doi.org/10.1074/mcp.M500331-MCP200

    Article  CAS  PubMed  Google Scholar 

  182. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945. https://doi.org/10.1073/pnas.0832254100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci U S A 104(14):5860–5865. https://doi.org/10.1073/pnas.0608638104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yates JR (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33(1):1–19. https://doi.org/10.1002/(sici)1096-9888(199801)33:1<1::Aid-jms624>3.0.Co;2-9

    Article  CAS  PubMed  Google Scholar 

  185. Timmins-Schiffman E, Nunn BL, Goodlett DR, Roberts SB (2013) Shotgun proteomics as a viable approach for biological discovery in the Pacific oyster. Conserv Physiol 1(1):cot009. https://doi.org/10.1093/conphys/cot009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics 2012:494572. https://doi.org/10.1155/2012/494572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR 3rd (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394. https://doi.org/10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M, Lukong KE (2014) Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal 26(12):2843–2856. https://doi.org/10.1016/j.cellsig.2014.07.034

    Article  CAS  PubMed  Google Scholar 

  189. Wiesner A (2004) Detection of tumor markers with ProteinChip® technology. Curr Pharm Biotechnol 5(1):45–67. https://doi.org/10.2174/1389201043489675

    Article  CAS  PubMed  Google Scholar 

  190. Hu Y, Zhang S, Yu J, Liu J, Zheng S (2005) SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer. Breast 14(4):250–255. https://doi.org/10.1016/j.breast.2005.01.008

    Article  PubMed  Google Scholar 

  191. Nomura DK, Dix MM, Cravatt BF (2010) Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer 10(9):630–638. https://doi.org/10.1038/nrc2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sadaghiani AM, Verhelst SH, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11(1):20–28. https://doi.org/10.1016/j.cbpa.2006.11.030

    Article  CAS  PubMed  Google Scholar 

  193. Fonovic M, Bogyo M (2008) Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Rev Proteomics 5(5):721–730. https://doi.org/10.1586/14789450.5.5.721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366(6-7):669–676. https://doi.org/10.1007/s002160051561

    Article  CAS  PubMed  Google Scholar 

  195. Abo M, Li C, Weerapana E (2018) Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Mol Pharm 15(3):743–749. https://doi.org/10.1021/acs.molpharmaceut.7b00832

    Article  CAS  PubMed  Google Scholar 

  196. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 40(2):271–280. https://doi.org/10.3892/ijmm.2017.3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yarden Y (2001) The EGFR family and its ligands in human cancer. Eur J Cancer 37:3–8. https://doi.org/10.1016/s0959-8049(01)00230-1

    Article  Google Scholar 

  198. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101. https://doi.org/10.1038/nbt1046

    Article  CAS  PubMed  Google Scholar 

  199. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104(7):2193–2198. https://doi.org/10.1073/pnas.0607084104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hagen JB (2000) The origins of bioinformatics. Nat Rev Genet 1(3):231–236. https://doi.org/10.1038/35042090

    Article  CAS  PubMed  Google Scholar 

  201. Colinge J, Bennett KL (2007) Introduction to computational proteomics. PLoS Comput Biol 3(7):e114. https://doi.org/10.1371/journal.pcbi.0030114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Perez-Iratxeta C, Andrade-Navarro MA, Wren JD (2007) Evolving research trends in bioinformatics. Brief Bioinform 8(2):88–95. https://doi.org/10.1093/bib/bbl035

    Article  CAS  PubMed  Google Scholar 

  203. Zamanian-Azodi M, Rezaei-Tavirani M, Mortazavian A, Vafaee R, Rezaei-Tavirani M, Zali H, Soheili-Kashani M (2015) Application of proteomics in cancer study. Am J Cancer Sci 2:1–18

    Google Scholar 

  204. Ebert MP, Korc M, Malfertheiner P, Rocken C (2006) Advances, challenges, and limitations in serum-proteome-based cancer diagnosis. J Proteome Res 5(1):19–25. https://doi.org/10.1021/pr050271e

    Article  CAS  PubMed  Google Scholar 

  205. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, Teh BS, Haab BB (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3(1):56–63. https://doi.org/10.1002/pmic.200390009

    Article  CAS  PubMed  Google Scholar 

  206. FDA-NIH (2016) BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. In: (MD) SS (ed) BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD)

    Google Scholar 

  207. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M, Yasui Y (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061. https://doi.org/10.1093/jnci/93.14.1054

    Article  CAS  PubMed  Google Scholar 

  208. Cyll K, Ersvaer E, Vlatkovic L, Pradhan M, Kildal W, Avranden Kjaer M, Kleppe A, Hveem TS, Carlsen B, Gill S, Loffeler S, Haug ES, Waehre H, Sooriakumaran P, Danielsen HE (2017) Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br J Cancer 117(3):367–375. https://doi.org/10.1038/bjc.2017.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Baggerly KA, Morris JS, Coombes KR (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20(5):777–785. https://doi.org/10.1093/bioinformatics/btg484

    Article  CAS  PubMed  Google Scholar 

  210. Masucci GV, Cesano A, Hawtin R, Janetzki S, Zhang J, Kirsch I, Dobbin KK, Alvarez J, Robbins PB, Selvan SR, Streicher HZ, Butterfield LH, Thurin M (2016) Validation of biomarkers to predict response to immunotherapy in cancer: volume I - pre-analytical and analytical validation. J Immunother Cancer 4:76. https://doi.org/10.1186/s40425-016-0178-1

    Article  PubMed  PubMed Central  Google Scholar 

  211. Goossens N, Nakagawa S, Sun X, Hoshida Y (2015) Cancer biomarker discovery and validation. Transl Cancer Res 4(3):256–269. https://doi.org/10.3978/j.issn.2218-676X.2015.06.04

    Article  CAS  PubMed  Google Scholar 

  212. Selleck MJ, Senthil M, Wall NR (2017) Making meaningful clinical use of biomarkers. Biomark Insights 12:1177271917715236. https://doi.org/10.1177/1177271917715236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zheng Y (2018) Study design considerations for cancer biomarker discoveries. J Appl Lab Med 3(2):282–289. https://doi.org/10.1373/jalm.2017.025809

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD (2008) Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 100(20):1432–1438. https://doi.org/10.1093/jnci/djn326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101(21):1446–1452. https://doi.org/10.1093/jnci/djp335

    Article  PubMed  PubMed Central  Google Scholar 

  216. Watson RW, Kay EW, Smith D (2010) Integrating biobanks: addressing the practical and ethical issues to deliver a valuable tool for cancer research. Nat Rev Cancer 10(9):646–651. https://doi.org/10.1038/nrc2913

    Article  CAS  PubMed  Google Scholar 

  217. Pepe MS, Li CI, Feng Z (2015) Improving the quality of biomarker discovery research: the right samples and enough of them. Cancer Epidemiol Biomarkers Prev 24(6):944–950. https://doi.org/10.1158/1055-9965.EPI-14-1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fraser GA, Meyer RM (2007) Biomarkers and the design of clinical trials in cancer. Biomark Med 1(3):387–397. https://doi.org/10.2217/17520363.1.3.387

    Article  CAS  PubMed  Google Scholar 

  219. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009. https://doi.org/10.1056/NEJMoa021967

    Article  PubMed  Google Scholar 

  220. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. https://doi.org/10.1056/NEJMoa041588

    Article  CAS  PubMed  Google Scholar 

  221. Nguyen HG, Welty CJ, Cooperberg MR (2015) Diagnostic associations of gene expression signatures in prostate cancer tissue. Curr Opin Urol 25(1):65–70. https://doi.org/10.1097/MOU.0000000000000131

    Article  PubMed  Google Scholar 

  222. You YN, Rustin RB, Sullivan JD (2015) Oncotype DX((R)) colon cancer assay for prediction of recurrence risk in patients with stage II and III colon cancer: a review of the evidence. Surg Oncol 24(2):61–66. https://doi.org/10.1016/j.suronc.2015.02.001

    Article  PubMed  Google Scholar 

  223. Colburn WA (2003) Biomarkers in drug discovery and development: from target identification through drug marketing. J Clin Pharmacol 43(4):329–341. https://doi.org/10.1177/0091270003252480

    Article  PubMed  Google Scholar 

  224. Freidlin B, McShane LM, Korn EL (2010) Randomized clinical trials with biomarkers: design issues. J Natl Cancer Inst 102(3):152–160. https://doi.org/10.1093/jnci/djp477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gosho M, Nagashima K, Sato Y (2012) Study designs and statistical analyses for biomarker research. Sensors (Basel) 12(7):8966–8986. https://doi.org/10.3390/s120708966

    Article  CAS  Google Scholar 

  226. Sargent DJ, Conley BA, Allegra C, Collette L (2005) Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 23(9):2020–2027. https://doi.org/10.1200/JCO.2005.01.112

    Article  PubMed  Google Scholar 

  227. Buyse M, Michiels S, Sargent DJ, Grothey A, Matheson A, de Gramont A (2011) Integrating biomarkers in clinical trials. Expert Rev Mol Diagn 11(2):171–182. https://doi.org/10.1586/erm.10.120

    Article  PubMed  Google Scholar 

  228. Chakravarty AG, Rothmann M, Sridhara R (2011) Regulatory issues in use of biomarkers in oncology trials. Stat Biopharm Res 3(4):569–576. https://doi.org/10.1198/sbr.2011.09026

    Article  Google Scholar 

  229. Jenkins M, Flynn A, Smart T, Harbron C, Sabin T, Ratnayake J, Delmar P, Herath A, Jarvis P, Matcham J, Group PSIBSI (2011) A statistician’s perspective on biomarkers in drug development. Pharm Stat 10(6):494–507. https://doi.org/10.1002/pst.532

    Article  PubMed  Google Scholar 

  230. Kontos CK, Adamopoulos PG, Scorilas A (2015) Prognostic and predictive biomarkers in prostate cancer. Expert Rev Mol Diagn 15(12):1567–1576. https://doi.org/10.1586/14737159.2015.1110022

    Article  CAS  PubMed  Google Scholar 

  231. Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC (1981) Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 68(5):1331–1337. https://doi.org/10.1172/jci110380

    Article  PubMed  PubMed Central  Google Scholar 

  232. Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res 12(1):28. https://doi.org/10.1186/s13048-019-0503-7

    Article  PubMed  PubMed Central  Google Scholar 

  233. Bhatti I, Patel M, Dennison AR, Thomas MW, Garcea G (2015) Utility of postoperative CEA for surveillance of recurrence after resection of primary colorectal cancer. Int J Surg 16:123–128. https://doi.org/10.1016/j.ijsu.2015.03.002

    Article  PubMed  Google Scholar 

  234. Vallam KC, Guruchannabasavaiah B, Agrawal A, Rangarajan V, Ostwal V, Engineer R, Saklani A (2017) Carcinoembryonic antigen directed PET-CECT scanning for postoperative surveillance of colorectal cancer. Colorectal Dis 19(10):907–911. https://doi.org/10.1111/codi.13695

    Article  CAS  PubMed  Google Scholar 

  235. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703. https://doi.org/10.1056/NEJMoa1210093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Janne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, Ahn MJ, Kim SW, Su WC, Horn L, Haggstrom D, Felip E, Kim JH, Frewer P, Cantarini M, Brown KH, Dickinson PA, Ghiorghiu S, Ranson M (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372(18):1689–1699. https://doi.org/10.1056/NEJMoa1411817

    Article  PubMed  Google Scholar 

  237. Carson PE, Flanagan CL, Ickes CE, Alving AS (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124(3220):484–485. https://doi.org/10.1126/science.124.3220.484-a

    Article  CAS  PubMed  Google Scholar 

  238. Kalow W, Staron N (1957) On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem Physiol 35(12):1305–1320

    Article  CAS  PubMed  Google Scholar 

  239. Evans DA, Manley KA, Mc KV (1960) Genetic control of isoniazid metabolism in man. Br Med J 2(5197):485–491. https://doi.org/10.1136/bmj.2.5197.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Mahgoub A, Dring LG, Idle JR, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet 310(8038):584–586. https://doi.org/10.1016/s0140-6736(77)91430-1

    Article  Google Scholar 

  241. Bertilsson L, Dengler HJ, Eichelbaum M, Schulz HU (1980) Pharmacogenetic covariation of defective N-oxidation of sparteine and 4-hydroxylation of debrisoquine. Eur J Clin Pharmacol 17(2):153–155. https://doi.org/10.1007/bf00562624

    Article  CAS  PubMed  Google Scholar 

  242. Vogel F (1959) Moderne Probleme der Humangenetik. In: Heilmeyer L, Schoen R, de Rudder B (eds) Ergebnisse der Inneren Medizin und Kinderheilkunde, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94744-5_2

    Chapter  Google Scholar 

  243. EMEA (2002) Position paper on terminology in pharmacogenetics. Committee for proprietary medicinal products. European Agency for the Evaluation of Medicinal Products

    Google Scholar 

  244. Redekop WK, Mladsi D (2013) The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health 16(6 Suppl):S4–S9. https://doi.org/10.1016/j.jval.2013.06.005

    Article  PubMed  Google Scholar 

  245. Salari P, Larijani B (2017) Ethical issues surrounding personalized medicine: a literature review. Acta Med Iran 55(3):209–217

    PubMed  Google Scholar 

  246. Annas GJ (2014) Personalized medicine or public health? Bioethics, human rights, and choice. Revista Portuguesa de Saúde Pública 32(2):158–163. https://doi.org/10.1016/j.rpsp.2014.04.003

    Article  Google Scholar 

  247. Vogenberg FR, Isaacson Barash C, Pursel M (2010) Personalized medicine: part 1: evolution and development into theranostics. P T 35(10):560–576

    PubMed  PubMed Central  Google Scholar 

  248. Chen R, Snyder M (2013) Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med 5(1):73–82. https://doi.org/10.1002/wsbm.1198

    Article  PubMed  Google Scholar 

  249. Ginsburg GS, Phillips KA (2018) Precision medicine: from science to value. Health Aff (Millwood) 37(5):694–701. https://doi.org/10.1377/hlthaff.2017.1624

    Article  Google Scholar 

  250. Alyass A, Turcotte M, Meyre D (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics 8:33. https://doi.org/10.1186/s12920-015-0108-y

    Article  PubMed  PubMed Central  Google Scholar 

  251. Popa ML, Albulescu R, Neagu M, Hinescu ME, Tanase C (2019) Multiplex assay for multiomics advances in personalized-precision medicine. J Immunoassay Immunochem 40(1):3–25. https://doi.org/10.1080/15321819.2018.1562940

    Article  CAS  PubMed  Google Scholar 

  252. Sharrer GT (2017) Personalized medicine: ethical aspects. Methods Mol Biol 1606:37–50. https://doi.org/10.1007/978-1-4939-6990-6_3

    Article  CAS  PubMed  Google Scholar 

  253. Badzek L, Henaghan M, Turner M, Monsen R (2013) Ethical, legal, and social issues in the translation of genomics into health care. J Nurs Scholarsh 45(1):15–24. https://doi.org/10.1111/jnu.12000

    Article  PubMed  Google Scholar 

  254. Joly Y, Saulnier KM, Osien G, Knoppers BM (2014) The ethical framing of personalized medicine. Curr Opin Allergy Clin Immunol 14(5):404–408. https://doi.org/10.1097/ACI.0000000000000091

    Article  PubMed  Google Scholar 

  255. Salari K, Watkins H, Ashley EA (2012) Personalized medicine: hope or hype? Eur Heart J 33(13):1564–1570. https://doi.org/10.1093/eurheartj/ehs112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kurnat-Thoma EL (2011) Genetics and genomics: the scientific drivers of personalized medicine. Annu Rev Nurs Res 29:27–54

    Article  PubMed  Google Scholar 

  257. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349(6255):1483–1489. https://doi.org/10.1126/science.aab4082

    Article  CAS  PubMed  Google Scholar 

  258. Cocca M, Bedognetti D, La Bianca M, Gasparini P, Girotto G (2016) Pharmacogenetics driving personalized medicine: analysis of genetic polymorphisms related to breast cancer medications in Italian isolated populations. J Transl Med 14:22. https://doi.org/10.1186/s12967-016-0778-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Tavares P, Dias L, Palmeiro A, Rendeiro P, Tolias P (2011) Single-test parallel assessment of multiple genetic disorders. Pers Med 8(3):375–379. https://doi.org/10.2217/pme.11.23

    Article  Google Scholar 

  260. Roth M, Keeling P, Smart D (2010) Driving personalized medicine: capturing maximum net present value and optimal return on investment. Pers Med 7(1):103–114. https://doi.org/10.2217/pme.09.64

    Article  Google Scholar 

  261. Steffen JA, Steffen JS (2013) Driving forces behind the past and future emergence of personalized medicine. J Pers Med 3(1):14–22. https://doi.org/10.3390/jpm3010014

    Article  PubMed  PubMed Central  Google Scholar 

  262. Goldberger JJ, Buxton AE (2013) Personalized medicine vs guideline-based medicine. JAMA 309(24):2559–2560. https://doi.org/10.1001/jama.2013.6629

    Article  CAS  PubMed  Google Scholar 

  263. Chen R, Snyder M (2012) Systems biology: personalized medicine for the future? Curr Opin Pharmacol 12(5):623–628. https://doi.org/10.1016/j.coph.2012.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zoon CK, Starker EQ, Wilson AM, Emmert-Buck MR, Libutti SK, Tangrea MA (2009) Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev Mol Diagn 9(5):455–467. https://doi.org/10.1586/erm.09.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Pardanani A, Wieben ED, Spelsberg TC, Tefferi A (2002) Primer on medical genomics. Part IV: expression proteomics. Mayo Clin Proc 77(11):1185–1196. https://doi.org/10.4065/77.11.1185

    Article  CAS  PubMed  Google Scholar 

  266. Haga SB, Beskow LM (2008) Ethical, legal, and social implications of biobanks for genetics research. Adv Genet 60:505–544. https://doi.org/10.1016/S0065-2660(07)00418-X

    Article  PubMed  Google Scholar 

  267. Chalmers D (2011) Genetic research and biobanks. Methods Mol Biol 675:1–37. https://doi.org/10.1007/978-1-59745-423-0_1

    Article  CAS  PubMed  Google Scholar 

  268. Jamal L, Sapp JC, Lewis K, Yanes T, Facio FM, Biesecker LG, Biesecker BB (2014) Research participants’ attitudes towards the confidentiality of genomic sequence information. Eur J Hum Genet 22(8):964–968. https://doi.org/10.1038/ejhg.2013.276

    Article  PubMed  Google Scholar 

  269. Caulfield T, McGuire AL, Cho M, Buchanan JA, Burgess MM, Danilczyk U, Diaz CM, Fryer-Edwards K, Green SK, Hodosh MA, Juengst ET, Kaye J, Kedes L, Knoppers BM, Lemmens T, Meslin EM, Murphy J, Nussbaum RL, Otlowski M, Pullman D, Ray PN, Sugarman J, Timmons M (2008) Research ethics recommendations for whole-genome research: consensus statement. PLoS Biol 6(3):e73. https://doi.org/10.1371/journal.pbio.0060073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Goh AM, Chiu E, Yastrubetskaya O, Erwin C, Williams JK, Juhl AR, Paulsen JS, Group IR-HIOTHS (2013) Perception, experience, and response to genetic discrimination in Huntington’s disease: the Australian results of The International RESPOND-HD study. Genet Test Mol Biomarkers 17(2):115–121. https://doi.org/10.1089/gtmb.2012.0288

    Article  PubMed  PubMed Central  Google Scholar 

  271. Matloff ET, Bonadies DC, Moyer A, Brierley KL (2014) Changes in specialists’ perspectives on cancer genetic testing, prophylactic surgery and insurance discrimination: then and now. J Genet Couns 23(2):164–171. https://doi.org/10.1007/s10897-013-9625-z

    Article  PubMed  Google Scholar 

  272. Pierce JD, Fakhari M, Works KV, Pierce JT, Clancy RL (2007) Understanding proteomics. Nurs Health Sci 9(1):54–60. https://doi.org/10.1111/j.1442-2018.2007.00295.x

    Article  PubMed  Google Scholar 

  273. Carlson RJ (2009) The disruptive nature of personalized medicine technologies: implications for the health care system. Public Health Genomics 12(3):180–184. https://doi.org/10.1159/000189631

    Article  CAS  PubMed  Google Scholar 

  274. Celis JE, Kruhøffer M, Gromova I, Frederiksen C, Østergaard M, Thykjaer T, Gromov P, Yu J, Pálsdóttir H, Magnusson N, Ørntoft TF (2000) Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett 480(1):2–16. https://doi.org/10.1016/s0014-5793(00)01771-3

    Article  CAS  PubMed  Google Scholar 

  275. Agyeman AA, Ofori-Asenso R (2015) Perspective: does personalized medicine hold the future for medicine? J Pharm Bioallied Sci 7(3):239–244. https://doi.org/10.4103/0975-7406.160040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Mosca R, Ceol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10(1):47–53. https://doi.org/10.1038/nmeth.2289

    Article  CAS  PubMed  Google Scholar 

  277. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. https://doi.org/10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  278. Hanash S, Taguchi A (2010) The grand challenge to decipher the cancer proteome. Nat Rev Cancer 10(9):652–660. https://doi.org/10.1038/nrc2918

    Article  CAS  PubMed  Google Scholar 

  279. Khan SR, Khurshid Z, Akhbar S, Moin FS (2016) Advances of salivary proteomics in Oral Squamous Cell Carcinoma (OSCC) detection: an update. Proteomes 4(4). https://doi.org/10.3390/proteomes4040041

  280. Shah FD, Begum R, Vajaria BN, Patel KR, Patel JB, Shukla SN, Patel PS (2011) A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem 26(4):326–334. https://doi.org/10.1007/s12291-011-0149-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Behjati S, Haniffa M (2017) Genetics: taking single-cell transcriptomics to the bedside. Nat Rev Clin Oncol 14(10):590–592. https://doi.org/10.1038/nrclinonc.2017.117

    Article  PubMed  Google Scholar 

  282. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–532. https://doi.org/10.1038/ng1037

    Article  CAS  PubMed  Google Scholar 

  283. Celis JE, Gromov P (2003) Proteomics in translational cancer research: toward an integrated approach. Cancer Cell 3(1):9–15. https://doi.org/10.1016/s1535-6108(02)00242-8

    Article  CAS  PubMed  Google Scholar 

  284. Vaidyanathan G (2012) Redefining clinical trials: the age of personalized medicine. Cell 148(6):1079–1080. https://doi.org/10.1016/j.cell.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  285. Sanchez JC, Couté Y, Allard L, Lescuyer P, Hochstrasser DF (2007) Biomedical applications of proteomics. Principles and practice. Springer, Berlin, Heidelberg, Proteome Research. https://doi.org/10.1007/978-3-540-72910-5_9

  286. Barbosa EB, Vidotto A, Polachini GM, Henrique T, Marqui AB, Tajara EH (2012) Proteomics: methodologies and applications to the study of human diseases. Rev Assoc Med Bras (1992) 58(3):366–375. https://doi.org/10.1590/S0104-42302012000300019

    Article  Google Scholar 

  287. Jain KK (2008) Recent advances in nanooncology. Technol Cancer Res Treat 7(1):1–13. https://doi.org/10.1177/153303460800700101

    Article  CAS  PubMed  Google Scholar 

  288. Kopf E, Zharhary D (2007) Antibody arrays--an emerging tool in cancer proteomics. Int J Biochem Cell Biol 39(7–8):1305–1317. https://doi.org/10.1016/j.biocel.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  289. Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7(5):2133–2139. https://doi.org/10.1021/pr700894d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M (2007) Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci 1107:223–230. https://doi.org/10.1196/annals.1381.024

    Article  CAS  PubMed  Google Scholar 

  291. Voduc D, Kenney C, Nielsen TO (2008) Tissue microarrays in clinical oncology. Semin Radiat Oncol 18(2):89–97. https://doi.org/10.1016/j.semradonc.2007.10.006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asma Saleem Qazi or Muhammad Zeeshan Bhatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qazi, A.S., Akbar, S., Saeed, R.F., Bhatti, M.Z. (2020). Translational Research in Oncology. In: Masood, N., Shakil Malik, S. (eds) 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-1067-0_11

Download citation

Publish with us

Policies and ethics