Skip to main content

Zero Loss 90° Waveguide: A Futuristic Photonic Components to Unravel Bending Loss Issues

  • Conference paper
  • First Online:
  • 845 Accesses

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 37))

Abstract

A proposal related to zero loss waveguide is evinced in the present communication, which deals with two dimensional photonic crystal structure having 90° bend channels to unravel bending loss issues owing to no altering of a signal between input and output. The said approach is also extended to exhibit an exhilarated result pertaining to short and long channels, where channel is manipulated with signal of wavelength, 619 nm. Furthermore, the entire work is executed by deploying FDTD technique to realize above mentioned proposal, which could be an apt candidate to riddle out bending loss issues which encounter a serious problem in the communication system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc.,) ISBN. 1-58053-076-1

    Google Scholar 

  2. G.T. Reed, Silicon Photonics: An Introduction (Wiley Publisher). ISBN-10: 0470870346

    Google Scholar 

  3. K.P. Swain, G. Palai, Estimation of human-hemoglobin using honeycomb structure: an application of photonic crystal. Optik Int. J. Light Electron Opt. 127(6), 3333–3336 (2016)

    Article  Google Scholar 

  4. G. Palai, Measurement of impurity concentration in chalcogenide glasses using optical principle. Optik Int. J. Light Electron Opt. 125(19), 5794–5799 (2014)

    Article  Google Scholar 

  5. C.S. Mishra, G. Palai, Optical nonlinearity in germanium and silicon semiconductor vis-a-vis temperature and wavelengths for sensing application. Optik Int. J. Light Electron Opt. 137, 37–44 (2017)

    Article  Google Scholar 

  6. J.S.N. Achary, G. Palai, S.K. Tripathy, Realization of an optical demultiplexer using the combination of filter and finite difference time domain approach. Optik Int. J. Light Electron Opt. 150, 94–98 (2017)

    Article  Google Scholar 

  7. G. Palai, Optimization of optical waveguide for optical DEMUX at optical windows. Optik Int. J. Light Electron Opt. 127(5), 2590–2593 (2016)

    Article  Google Scholar 

  8. G. Palai, S.K. Beura, N. Gupta, R. Sinha, Optical MUX/DEMUX using 3D photonic crystal structure: a future application of silicon photonics. Optik Int. J. Light Electron Opt. 128, 224–227 (2017)

    Article  Google Scholar 

  9. G. Palai, N. Mudului, S. Sahoo, S. Tripathy, Realization of potassium chloride sensor using photonic crystal fiber. Soft Nanosci. Lett. 3(4A), 16–19 (2013)

    Article  Google Scholar 

  10. G. Palai, B. Nayak, S.R. Rout, Realisation of optical demux vis-a-vis 850/1310/1550 nm using photonic crystal fiber. Optik Int. J. Light Electron Opt. 159, 344–347 (2018)

    Article  Google Scholar 

  11. G. Palai, B. Nayak, S.K. Sahoo, S.R. Nayak, S.K. Tripathy, Metamaterial based photonic crystal fiber memory for optical computer. Optik Int. J. Light Electron Opt. 171, 393–396 (2018)

    Article  Google Scholar 

  12. S.K. Mohanty, G. Palai, U. Bhanja, C.S. Mishra, A new-fangled high dimensional waveguide for multiple sensing applications using finite difference time domain method. Optik Int. J. Light Electron Opt 172, 861–865 (2018)

    Article  Google Scholar 

  13. G. Aydin, A single-field finite-difference time-domain formulations for electromagnetic simulations, Electrical Engineering and Computer Science - Dissertations, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Palai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalai, P.K., Palai, G., Sarkar, P. (2020). Zero Loss 90° Waveguide: A Futuristic Photonic Components to Unravel Bending Loss Issues. In: Borah, S., Emilia Balas, V., Polkowski, Z. (eds) Advances in Data Science and Management. Lecture Notes on Data Engineering and Communications Technologies, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-15-0978-0_51

Download citation

Publish with us

Policies and ethics