Skip to main content

Nanopolysaccharides in Energy Storage Applications

  • Chapter
  • First Online:
Advanced Functional Materials from Nanopolysaccharides

Abstract

In the recent decades, shortages of energy and resource, together with pollution of environment, have become the biggest problems on earth. Thus, construction of novel renewable and biodegradable materials based on nanopolysaccharides, such as nanocellulose, nanochitin or nanochitosan, and nanostarch, and exploration of their energy related applications, have received more and more attention. In this chapter, we review the preparation of nanopolysaccharide-based energy materials as well as their applications in the fields of energy storage, e.g. dielectric capacitor, supercapacitors, batteries, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Brodd RJ (2014) What are batteries, fuel cells and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  2. Li Q, Yao F-Z, Liu Y et al (2018) High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res 48:3.1–3.25

    Article  CAS  Google Scholar 

  3. Wen L, Li F, Cheng H-M (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337

    Article  CAS  Google Scholar 

  4. Dubal D, Chodankar N, Kim D-H et al (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129

    Article  CAS  Google Scholar 

  5. He J, Manthiram A (2019) A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater 20:55–70

    Article  Google Scholar 

  6. Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071

    Article  CAS  Google Scholar 

  7. Wang X, Lu X, Liu B et al (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763

    Article  CAS  Google Scholar 

  8. Zhou Y, Li Q, Dang B et al (2018) A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv Mater 30:1805672

    Article  CAS  Google Scholar 

  9. Chen W, Yu H, Lee SY et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872

    Article  CAS  Google Scholar 

  10. Bras DL, Stromme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119:5911–5917

    Article  CAS  Google Scholar 

  11. Kim JH, Lee D, Lee YH et al (2018) Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater 31:1804826

    Article  CAS  Google Scholar 

  12. Vicente A, Araújo A, Mendes M et al (2018) Multifunctional cellulose-paper for light harvesting and smart sensing applications. J Mater Chem C 6:3143–3181

    Article  Google Scholar 

  13. Moon R, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  14. Sahin H, Ay N (2004) Dielectric properties of hardwood species at microwave frequencies. J Wood Sci 50:375–380

    Article  Google Scholar 

  15. Ishida Y, Yōshino M, Takayanagi M et al (1959) Dielectric studies on cellulose fibers. J Appl Polym Sci 1:227–235

    Article  CAS  Google Scholar 

  16. Rout S, Anwar S, Tripathy B et al (2019) Nanosilver coated coir based dielectric materials with high K and low Df for embedded capacitors and insulating material applications—a greener approach. ACS Sustain Chem Eng 7:3824–3837

    Article  CAS  Google Scholar 

  17. Yang Q, Zhang C, Shi Z et al (2018) Luminescent and transparent nanocellulose films containing europium carboxylate groups as flexible dielectric materials. ACS Appl Nano Mater 1:4972–4979

    Article  CAS  Google Scholar 

  18. Tang C, Liao R, Chen G et al (2011) Research on the feature extraction of DC space charge behavior of oil-paper insulation. Sci China Technol Sci 54:1315–1324

    Article  Google Scholar 

  19. Petritz A, Wolfberger A, Fian A et al (2013) Cellulose as biodegradable high-k dielectric layer in organic complementary inverters. Appl Phys Lett 103:153303–153308

    Article  CAS  Google Scholar 

  20. Kafy A, Sadasivuni K, Kim HC et al (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931

    Article  CAS  Google Scholar 

  21. Irimia-Vladu M, Troshin P, Reisinger M et al (2010) Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 20:4069–4076

    Article  CAS  Google Scholar 

  22. Ji S, Jang J, Cho E et al (2017) High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv Mater 29:1700538

    Article  CAS  Google Scholar 

  23. Yang J, Xie H, Chen H et al (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411

    Article  CAS  Google Scholar 

  24. Zhang C, Yin Y, Yang Q et al (2019) Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustain Chem Eng 7:10641–10648

    Article  CAS  Google Scholar 

  25. Jayamani E, Hamdan S, Rahman M et al (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng 97:536–544

    Article  CAS  Google Scholar 

  26. Mehta M, Parsania P et al (2006) Fabrication and evaluation of some mechanical and electrical properties of jute-biomass based hybrid composites. J Appl Polym Sci 100:1754–1758

    Article  CAS  Google Scholar 

  27. Sreekumar P, Saiter J, Joseph K et al (2012) Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding. Compos Part A Appl Sci Manuf 43:507–511

    Article  CAS  Google Scholar 

  28. Zeng X, Deng L, Yao Y et al (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4:6037–6044

    Article  CAS  Google Scholar 

  29. Raghunathan S, Narayanan S, Poulose A et al (2016) Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr Polym 157:1024–1032

    Article  CAS  Google Scholar 

  30. Jia C, Shao Z, Fan H et al (2015) Preparation and dielectric properties of cyanoethyl cellulose/BaTiO3 flexible nanocomposite films. RSC Adv 5(20):15283–15291

    Article  CAS  Google Scholar 

  31. Jia C, Shao Z, Fan H et al (2016) Barium titanate as a filler for improving the dielectric property of cyanoethyl cellulose/antimony tin oxide nanocomposite films. Compos Part A Appl Sci Manuf 86:1–8

    Article  CAS  Google Scholar 

  32. Wu K, Fang J, Ma J et al (2017) Achieving a collapsible, strong and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl Mater Interfaces 9(35):30035–30045

    Article  CAS  Google Scholar 

  33. Lao J, Xie H, Shi Z et al (2018) Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain Chem Eng 6:7151–7158

    Article  CAS  Google Scholar 

  34. Chen H, Liu B, Yang Q et al (2017) Facile one-step exfoliation of large-size 2D materials via simply shearing in triethanolamine. Mater Lett 199:24–127

    Article  CAS  Google Scholar 

  35. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  36. Saito T, Nishiyama Y, Putaux J et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  37. Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  38. Zhang L, Mao Y, Zhou J et al (2005) Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/urea aqueous solution. Ind Eng Chem Res 44:522–529

    Article  CAS  Google Scholar 

  39. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul M 27:8–16

    Article  Google Scholar 

  40. Sarangapani S (1996) Materials for electrochemical capacitors. J Electrochem Soc 143:3791–3799

    Article  CAS  Google Scholar 

  41. Isogai A, Saitot T, Fukuzumih H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  42. Gao KZ, Shao ZQ, Jia L et al (2013) Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J Mater Chem A 1:63–67

    Article  CAS  Google Scholar 

  43. Hamedi Karabulut M, Marais E et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042

    Article  CAS  Google Scholar 

  44. Zheng Q, Zhang H, Mi H et al (2016) High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 26:504–512

    Article  CAS  Google Scholar 

  45. Zheng Q, Cai Z, Ma Z et al (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7(5):3263–3271

    Article  CAS  Google Scholar 

  46. Zhang X, Lin Z, Chen B et al (2014) Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J Power Sources 246(3):283–289

    Article  CAS  Google Scholar 

  47. Li S, Huang D, Yang J et al (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309

    Article  CAS  Google Scholar 

  48. Cai J, Niu H, Li Z et al (2015) High-performnace supercapacitor electrode materials form cellulose-derived carbon nanofibers. ACS Appl Mater Interfaces 7(27):14946

    Article  CAS  Google Scholar 

  49. Li Z, Liu J, Jiang K et al (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–16940

    Article  CAS  Google Scholar 

  50. Bi Z, Kong Q, Cao Y et al (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045

    Article  CAS  Google Scholar 

  51. Cai J, Niu H, Wang H et al (2016) High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. J Power Sources 324:302–308

    Article  CAS  Google Scholar 

  52. Berenguer R, García-Mateos F, Ruiz-Rosas R et al (2016) Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem 18(6):1506–1515

    Article  CAS  Google Scholar 

  53. Jin Z, Yan X, Yu Y et al (2014) Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J Mater Chem A2(30):11706–11715

    Article  Google Scholar 

  54. Liu Y, Shi Z, Gao Y et al (2016) Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces 8(42):28283–28290

    Article  CAS  Google Scholar 

  55. Zhang X, Meng X, Gong S et al (2016) Synthesis and characterization of 3D MnO2/carbon microtube bundle for supercapacitor electrodes. Mater Lett 179:73–77

    Article  CAS  Google Scholar 

  56. Zhang X, Zhang K, Li H et al (2017) Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors. J Power Sources 344:176–184

    Article  CAS  Google Scholar 

  57. Purkait T, Singh G, Singh M et al (2017) Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep UK 7(1)

    Google Scholar 

  58. Qian W, Sun F, Xu Y et al (2013) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386

    Article  Google Scholar 

  59. Wang C, Wu D, Wang H et al (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375–383

    Article  CAS  Google Scholar 

  60. An Y, Li Z, Yang Y et al (2017) Synthesis of hierarchically porous nitrogen-doped carbon nanosheets from agaric for high-performance symmetric supercapacitors. Adv Mater Interfaces 4(12):1700033

    Article  CAS  Google Scholar 

  61. Ling Z, Wang Z, Zhang M et al (2015) Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119

    Article  CAS  Google Scholar 

  62. You J, Li M, Ding B et al (2017) Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv Mater 29(19):1606895

    Article  CAS  Google Scholar 

  63. Ma F, Song S, Wu G et al (2015) Facile self-template large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A3:18154–18162

    Google Scholar 

  64. Liang Q, Ye L, Huang Z et al (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22):13831–13837

    Article  CAS  Google Scholar 

  65. Duan B, Gao X, Yao X et al (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491

    Article  CAS  Google Scholar 

  66. Gao L, Xiong L, Xu D et al (2018) Distinctive construction of chitin derived hierarchically porous carbon microspheres/polyaniline for high rate supercapacitors. ACS Appl Mater Interfaces 10(34):28918–28927

    Article  CAS  Google Scholar 

  67. Zhao G, Chen C, Yu D et al (2018) One-step production of O-N-S Co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555

    Article  CAS  Google Scholar 

  68. Yu P, Zhang Z, Zheng L et al (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6(20):1601111

    Article  CAS  Google Scholar 

  69. Chen C, Zhang Y, Li Y et al (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10(2):538–545

    Article  CAS  Google Scholar 

  70. Chen C, Hu L (2018) Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res 51(12):3154–3165

    Article  CAS  Google Scholar 

  71. Wang Z, Tammela P, Strømme M et al (2017) Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater 7(18):1700130

    Article  CAS  Google Scholar 

  72. Chen W, Yu H, Lee S et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47(8):2837–2872

    Article  CAS  Google Scholar 

  73. Ling S, Chen W, Fan Y et al (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56

    Article  CAS  Google Scholar 

  74. Jost K, Durkin DP, Haverhals L et al (2015) Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv Energy Mater 5(4):1401286

    Article  CAS  Google Scholar 

  75. Li Y, Zhu H, Shen F et al (2014) Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. AdvFunct Mater 24(46):7366–7372

    Article  CAS  Google Scholar 

  76. Wu F, Zhao E, Gordon D et al (2016) Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes. Adv Mater 28(30):6365–6371

    Article  CAS  Google Scholar 

  77. Tu S, Chen X, Zhao X et al (2018) A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries. Adv Mater 30(45):e1804581

    Article  CAS  Google Scholar 

  78. Wang YY, Hou BH, Lu HY et al (2015) Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Adv 5(118):97427–97434

    Article  CAS  Google Scholar 

  79. Yang Y, Cui J, Zheng M et al (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382

    Article  CAS  Google Scholar 

  80. Han C, Xu L, Li H et al (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305

    Article  CAS  Google Scholar 

  81. Park HR, Jung KA, Lim SR et al (2014) Quantitative sustainability assessment of seaweed biomass as bioethanol feedstock. Bioenergy Res 7(3):974–985

    Article  CAS  Google Scholar 

  82. Li D, Yang D, Zhu X et al (2014) Simple pyrolysis of cobalt alginate fibres into Co3O4/C nano/microstructures for a high-performance lithium ion battery anode. J Mater Chem A 2(44):18761–18766

    Article  CAS  Google Scholar 

  83. Xiao S, Yang Y, Li M et al (2014) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sources 270:53–58

    Article  CAS  Google Scholar 

  84. Pan R, Wang Z, Sun R et al (2017) Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 24(7):2903–2911

    Article  CAS  Google Scholar 

  85. Zhao D, Chen C, Zhang Q et al (2017) High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv Energy Mater 7(18):1700739

    Article  CAS  Google Scholar 

  86. Kuribayashi I (1996) Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J Power Sources 63(1):87–91

    Article  CAS  Google Scholar 

  87. Zhang H, Wang X, Liang Y (2015) Preparation and characterization of a lithium-ion battery separator from cellulose nanofibers. Heliyon 1(2):e00032

    Article  Google Scholar 

  88. Kim JH, Gu M, Lee DH et al (2016) Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett 16(9):5533–5541

    Article  CAS  Google Scholar 

  89. Pan R, Xu X, Sun R et al (2018) Nanocellulose modified polyethylene separators for lithium metal batteries. Small 1704371

    Google Scholar 

  90. Li F, Wang G, Wang P et al (2017) High-performance lithium-sulfur batteries with a carbonized bacterial cellulose/TiO2 modified separator. J Electroanal Chem 788:150–155

    Article  CAS  Google Scholar 

  91. Xu Q, Wei C, Fan L et al (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24(4):1889–1899

    Article  CAS  Google Scholar 

  92. Chiappone A, Nair JR, Gerbaldi C et al (2011) Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J Power Sources 196(23):10280–10288

    Article  CAS  Google Scholar 

  93. Willgert M, Leijonmarck S, Lindbergh G et al (2014) Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J Mater Chem A 2(33):13556–13564

    Article  CAS  Google Scholar 

  94. Dong T, Zhang J, Xu G et al (2018) A multifunctional polymer electrolyte enables high-voltage lithium metal battery ultra-long cycle-life. Energy Environ Sci 11:1197–1203

    Article  CAS  Google Scholar 

  95. Choudhury NA, Sampath S, Shukla AK (2008) Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors. J Electrochem Soc 155(1):A74–A81

    Article  CAS  Google Scholar 

  96. Benedetti TM, Carvalho T, Iwakura DC et al (2015) All solid-state electrochromic device consisting of a water soluble viologen dissolved in gelatin-based ionogel. Sol Energy Mater Sol Cells 132:101–106

    Article  CAS  Google Scholar 

  97. Li H, Han C, Huang Y et al (2018) An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 11(4):941–951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51703177, 21704079), the Fundamental Research Funds for the Central Universities (WUT: 2018III009, 2018IVB022, 2018IVB041), and Key laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry council, Beijing Technology and Business University (No. PQETGP2019007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuqun Shi or Quanling Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C. et al. (2019). Nanopolysaccharides in Energy Storage Applications. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_4

Download citation

Publish with us

Policies and ethics