Skip to main content

Leveled Lattice-Based Linearly Homomorphic Signature Scheme in the Standard Model for Network Coding

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1105))

Abstract

Linearly homomorphic signature scheme is an important cryptographic primitive which can be used to against the pollution attacks in network coding. To achieve the security protection for network coding even in quantum environment, an efficient lattice-based linearly homomorphic signature scheme in the standard model is proposed in this paper. Unlike the known lattice-based scheme in the standard model, in our construction, lattice-based delegation algorithm is not needed to achieve the standard security. Hence, all the messages are signed over the same lattice in the proposed scheme. Hence, the public key of the proposed scheme only consists as a group of vectors compared with that a group of public and random matrices are necessary in known construction used lattice-based delegation tool. As a result, the public key size of the proposed scheme is shorter than that of the known lattice-based schemes (standard model). Moreover, the proposed scheme also shares advantage about the signature length. Based on the hardness of the standard short integer solution problem, we prove that the proposed scheme is adaptively unforgeable against the type 1 and type 2 adversaries in the standard model. We also shown that the proposed scheme satisfies the weakly context hiding property.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn, D.H., Boneh, D., Camenisch, J., et al.: Computing on authenticated data. J. Crypt. 28(2), 351–395 (2015)

    Article  MathSciNet  Google Scholar 

  2. Arita, S., Kozaki, S.: A homomorphic signature scheme for quadratic polynomials, in Smart Computing (SMARTCOMP). In: 2017 IEEE International Conference on, IEEE, pp. 1–6 (2017)

    Google Scholar 

  3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Proceedings of 26th International Symposium on Theoretical Aspects of Computer Science, vol. 09001, Freiburg, Germany, pp. 75–86 (2009)

    Google Scholar 

  4. Boneh, D., Freeman, D.M., Katz, J., et al.: Singing a linear subspace: signature schemes for network coding. In: Proceedings of PKC 2009, LNCS 5443, pp. 68–87. Springer-Verlag, Berlin (2009)

    Google Scholar 

  5. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_1

    Chapter  Google Scholar 

  6. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_10

    Chapter  Google Scholar 

  7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  8. Catalano, D., Fiore, D., Nizzardo, L.: Homomorphic signatures with sublinear public keys via asymmetric programmable hash functions. Des. Codes Cryptogr. 86, 2197–2246 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chen, W., Lei, H., Qi, K.: Lattice-based linearly homomorphic signatures in the standard model. Theor. Comput. Sci. 634, 47–54 (2016)

    Article  MathSciNet  Google Scholar 

  10. Fragouli, C., Soljanin, E.: Network coding fundamentals. Found. Trends Netw. 2(1), 1–133 (2007)

    Article  Google Scholar 

  11. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_41

    Chapter  Google Scholar 

  12. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_9

    Chapter  Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing STOC 2008, British Columbia, Canada, pp. 197–206 (2008)

    Google Scholar 

  14. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: (Leveled) fully homomorphic signatures from lattices. In: Proceedings of STOC, pp. 469–477 (2015)

    Google Scholar 

  15. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_17

    Chapter  Google Scholar 

  16. Liu, H.W., Cao, W.M.: Public proof of cloud storage from lattice assumption. Chin. J. Electron. 23(1), 186–190 (2014)

    Google Scholar 

  17. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_3

    Chapter  Google Scholar 

  18. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: Proceedings of 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Rome, Italy, pp. 372–381 (2004)

    Google Scholar 

  19. Wang, F., Hu, Y., Wang, B.: Lattice-based linearly homomorphic signature scheme over binary field. Sci. China Inf. Sci. 56(11), 112108:1–112108:9 (2013)

    MathSciNet  Google Scholar 

  20. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully homomorphic signatures based on lattices. IACR Cryptology ePrint Archive, 916 (2014)

    Google Scholar 

  21. Zheng, Y., Robert, H.D., Vijay, V.: Cryptography and data security in cloud computing. Inf. Sci. 387, 53–55 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 61803228, Project of Shandong Province Higher Education Science and Technology Program under grant J18KA361.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghe Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, F., Shi, S., Wang, C. (2019). Leveled Lattice-Based Linearly Homomorphic Signature Scheme in the Standard Model for Network Coding. In: Shen, B., Wang, B., Han, J., Yu, Y. (eds) Frontiers in Cyber Security. FCS 2019. Communications in Computer and Information Science, vol 1105. Springer, Singapore. https://doi.org/10.1007/978-981-15-0818-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0818-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0817-2

  • Online ISBN: 978-981-15-0818-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics