Skip to main content

Endophytes: A Potential Bio-agent for the Plant Protection

  • Chapter
  • First Online:
Innovative Pest Management Approaches for the 21st Century

Abstract

Endophytes are microorganisms living inside plants without causing any adverse effect. The symbiotic microorganism endophytes can be an alternative for the management of insect pests and plant pathogens. Select endophytes also function as biofertilizers, resulting in improved plant fitness. It will be crucially important to understand the mechanisms underlying endophytism. The responses of a crop plant to such endophytism and the subsequent responses of insect pests and plant pathogenesis are important to understand. Many aspects of the insect/pathogen and the endophytic microorganism remain unattended. This gap can be filled through an intensive research and understanding of signalling between the host plant and the microbiome. Despite the abundance of endophytes in crop rhizosphere, the rules that govern their presence and interaction with the crop plants are poorly understood. Recently, endophytes in seed tissues have gained significance due to their diversified roles in plant metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal VK, Sinclair JB (1996) Principle of seed pathology. Lewis Publication, Boca Raton

    Google Scholar 

  • Akello J, Dubois T, Coyne DL, Hillnhűtter C (2008a) Beauveria bassiana as an artificial endophyte in tissue cultured banana (Musa spp.) plants: a novel way to combat the banana weevil Cosmopolites sordidus. In: 41st Annual meeting of the Society of Invertebrate Pathology and 9th international conference on Bacillus thuringiensis, Conventry, UK, 3–7 Aug 2008

    Google Scholar 

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008b) Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue-cultured banana plants. Entomol Exp Appl 129(2):157–165

    Article  Google Scholar 

  • Akello J, Sikora R (2012) Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol Control 61(3):215–221

    Article  Google Scholar 

  • Akutse KS, Maniania NK, Fiaboe KKM, Van den Berg J, Ekesi S (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol 6(4):293–301

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95(3):388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Lewis LC (2005) Ecology and evolution of fungal endophytes, and their roles against insects. In: Insect-fungal associations: ecology and evolution. Oxford University Press, New York, pp 74–96

    Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99(2):185–206

    Article  CAS  PubMed  Google Scholar 

  • Aschehoug ET, Metlen KL, Callaway RM, Newcombe G (2012) Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 93(1):3–8

    Article  PubMed  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Azevedo JL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Bhagyasree SN, Ghosh SK, Thippaiah M, Rajgopal NN (2018) Survey on natural occurrence of endophytes in maize (Zea mays L.) Ecosystem. Int J Curr Microbiol Appl Sci 7(1):2526–2533

    Article  Google Scholar 

  • Bhore SJ, Christina A, Christapher V (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69(7):1477–1482

    Google Scholar 

  • Bing LA, Lewis LC (1991) Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol 20(4):1207–1211

    Article  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (L. Karst). FEMS Microbiol Lett 244(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Canny MJ, McCully ME (1988) The xylem sap of maize roots: its collection, composition and formation. Funct Plant Biol 15(4):557–566

    Article  CAS  Google Scholar 

  • Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Yaver D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224(2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Cherry AJ, Lomer CJ, Djegui D, Schulthess F (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. BioControl 44(3):301–327

    Article  Google Scholar 

  • Clay K (1989) Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res 92(1):1–12

    Article  Google Scholar 

  • Clay K (1992) Fungal endophytes of plants: biological and chemical diversity. Nat Toxins 1(3):147–149

    Article  CAS  PubMed  Google Scholar 

  • Clarke BB, White JF, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in Fine Fescues. Plant Dis 90(8):994–998

    Article  PubMed  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizosphere microorganisms. Springer, Netherland, pp 169–189

    Chapter  Google Scholar 

  • Dastogeer KMG, Li H, Sivasithamparam K, Jones MGK, Wylie SJ (2018) Host specificity of endophytic mycobiota of wild nicotiana plants from Arid regions of Northern Australia. Microb Ecol 75(1):74–87

    Article  PubMed  Google Scholar 

  • De Bery A (1866) Morphologic and physiologie der plize, Flechten, and Myxomyceten. In: De Bary A, Irmisch T, Pringsheim N, Sachs J (eds) Handbuch der Physiologischen botanok, vol 2. Leipzig

    Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161(2):310–325

    Article  PubMed  Google Scholar 

  • Fuller-Schaefer C, Jung K, Jaronski S (2005) Colonization of sugarbeet roots by entomopathogenic fungi. In: Proceedings of the 38th Annual Meeting of the Society for Invertebrate Pathology, Anchorage, Alaska (Vol 49)

    Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63(2):418–428

    Article  CAS  PubMed  Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci 101(27):10107–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351

    Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977

    Article  CAS  Google Scholar 

  • Greenfield M, Gómez-Jiménez MI, Ortiz V, Vega FE, Kramer M, Parsa S (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95:40–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin MR (2007) Beauveria bassiana, a cotton endophyte with biocontrol activity against seedling disease. Ph.D. dissertation, The University of Tennessee, Knoxville

    Google Scholar 

  • Griffin MR, Ownley BH, Klingemn WE, Pereira RM (2006) Evidence of induced systemic resistance of beauveria bassiana against Xanthomonas in cotton. Phytopathology 96:S42

    Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44(2):136–142

    Article  CAS  Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55(1):34–41

    Article  Google Scholar 

  • Han JI, Choi HK, Lee SW, Orwin PM, Kim J, LaRoe SL et al (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193(5):1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch GU, Rraun U (1992) Communities of parasitic microfingi. In: Winter Hoff W (ed) Handbook of vegetation science: fungi in vegetation science, vol 19. Kluwer Academic, Dordrecht, pp 225–250

    Chapter  Google Scholar 

  • Jaber LR (2015) Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana s.l. and its effect against downy mildew. BioControl 60(1):103–112

    Article  Google Scholar 

  • Jaber LR, Nida' MS (2014) Endophytic colonisation of squash by the fungal entomopathogen (Ascomycota: Hypocreales) for managing in cucurbits. Biocontrol Sci Technol 24(10):1096–1109

    Article  Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag Sci 66(5):555–564

    Article  CAS  PubMed  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9(4):358–363

    Article  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252(1):151–167

    Article  CAS  Google Scholar 

  • Lopez DC, Sword GA (2015) The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol Control 89:53–60

    Article  Google Scholar 

  • Malinnowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescuelant soil. Science 227:115–126

    Google Scholar 

  • Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134(3):151–159

    Article  CAS  PubMed  Google Scholar 

  • Murphy B, Doohan F, Hodkinson T (2018) From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi 4(1):24

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    Article  CAS  Google Scholar 

  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits E, Reardon KF (2008) Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil. J Environ Qual 37(4):1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98(3):267–270

    Article  CAS  PubMed  Google Scholar 

  • Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp (74):E50360. https://doi.org/10.3791/50360

  • Piccoli P, Bottini R (2013) Abiotic stress tolerance induced by endophytic PGPR. In: Symbiotic endophytes. Springer, Berlin, Heidelberg, pp 151–163

    Chapter  Google Scholar 

  • Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart RM, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49(5):705–711

    Article  Google Scholar 

  • Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111(6):748–757

    Article  CAS  PubMed  Google Scholar 

  • Powell WA, Klingeman WE, Ownley BH, Gwinn KD, Dee M, Flanagan PC (2007) Endophytic Beauveria bassiana in tomatoes yields mycosis in tomato friuitworm larvae. Hort Sci 42:933

    Google Scholar 

  • Prabhavathi MK (2012) Studies on the endophytic properties of Entomopathogenic fungi, Beauveria bassiana (Balsamo) against Banana pseudostem weevil, Odoiroporus longicollis (oliv). M.Sc thesis -PAL-0097, p 119

    Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009a) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66(3):402–408

    Article  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009b) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66(3):389–401

    Article  CAS  Google Scholar 

  • Qayyum MA, Wakil W, Arif MJ, Sahi ST, Dunlap CA (2015) Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol Control 90:200–207

    Article  Google Scholar 

  • Quadt-Hallmann A, Kloepper JW, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Munoz-Ledesma F, Santiago-Alvarez C (2009) Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol 38:723–730

    Article  CAS  PubMed  Google Scholar 

  • Radwan S (2009) Phytoremediation for Oily Desert Soils. In: Singh A, Kuhad CR, Ward PO (eds) Advances in applied bioremediation. Springer, Berlin, Heidelberg, pp 279–298

    Chapter  Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H, Noriharu AE (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130

    Article  CAS  PubMed  Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4–5):319–339

    Article  PubMed  Google Scholar 

  • Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Scorsetti AC (2015) Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci Tech 25(4):475–480

    Article  Google Scholar 

  • Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G (2016) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405(1-2):125–140

    Article  CAS  Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9(6):275–280

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. C R Biol 327(7):639–648

    Article  PubMed  Google Scholar 

  • Senthilraja G, Anand T, Durairaj C, Raguchander T, Samiyappan R (2010) Chitin-based bioformulation of Beauveria bassiana and Pseudomonas fluorescens for improved control of leafminer and collar rot in groundnut. Crop Prot 29(9):1003–1010

    Article  Google Scholar 

  • Senthilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R (2013) Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol Mol Plant Pathol 82:10–19

    Article  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Andrea V, Köllner TG, Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65(2):65–74

    Article  CAS  Google Scholar 

  • Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97(22):9589–9596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan ST, Vidal S, Rajulu G (2016) Biological control through fungal endophytes: gaps in knowledge hindering success. Curr Biotechnol 7(3):185–198. https://doi.org/10.2174/2211550105666160504130322

    Article  CAS  Google Scholar 

  • Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6(6):561–568

    Article  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54(5):663–669

    Article  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Varma PK, Uppala S, Pavuluri K, Chandra KJ, Chapala MM, Kumar KVK (2017) Endophytes: role and functions in crop health. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 291–310

    Chapter  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    Article  PubMed  Google Scholar 

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66(8):3468–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber J (1981) A natural biological control of Dutch elm disease. Nature 292(5822):449–451

    Article  Google Scholar 

  • Westendorf ML, Mitchell GE Jr, Tucker RE, Bush LP, Petroski RJ, Powell RG (1993) In vitro and in vivo ruminal and physiological responses to endophyte-infected tall fescue. J Dairy Sci 76(2):555–563

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81(1):98–169

    Google Scholar 

  • Zhao X-h, Wang W, Tong B, Zhang S-p, Wei D-z (2016) A newly isolated Penicillium oxalicum 16 cellulase with high efficient synergism and high tolerance of monosaccharide. Appl Biochem Biotechnol 178(1):173–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the authorities of the Multiplex Biotech Pvt. Ltd., Bengaluru, CABI, New Delhi, and the Murdoch University, Perth, Australia, for encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S.K., Chaudhary, M., Manjunatha, N. (2020). Endophytes: A Potential Bio-agent for the Plant Protection. In: Chakravarthy, A. (eds) Innovative Pest Management Approaches for the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-15-0794-6_14

Download citation

Publish with us

Policies and ethics