Skip to main content

Slope Stability Analysis Based on Coupled Approach

  • Chapter
  • First Online:
Hydro-mechanical Analysis of Rainfall-Induced Landslides
  • 500 Accesses

Abstract

Landslides that can result from high-intensity rainfall can be detrimental to infrastructure and can contribute to loss of human lives. Shallow rainfall-caused landslides are represented as sliding that appears down a surface parallel to sloping ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A, Huang JS, Lyamin AV, Sloan SW, Cassidy MJ (2014) Boundary effects of rainfall-induced landslides. Comput Geotech 61:341–354

    Article  Google Scholar 

  • Anderson SA, Sitar N (1995) Analysis of rainfall-induced debris flows. J Geotech Eng 121(7):544–552

    Article  Google Scholar 

  • ASTM D 3080-98 (2003) Standard test method for direct shear test of soils under consolidated drained conditions Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, PA, 04.08, pp 347–352

    Google Scholar 

  • Bishop AW (1959) The principle of effective stress. Tek Ukebl 39:859–863

    Google Scholar 

  • Brand EW (1981) Some thoughts on rainfall induced slope failures. In: Proceedings of 10th international conference on soil mechanics and foundation engineering, Stockholm

    Google Scholar 

  • Brand EW, Premchitt J, Phillipson HB (1984) Relationship between rainfall and landslides in Hong Kong. In: Toronto: Proceeding of 4th international symposium landslides, pp 377–384

    Google Scholar 

  • Cai F, Ugai K (2004) Numerical analysis of rainfall effects on slope stability. Int J Geomech 4(2):69–78

    Article  Google Scholar 

  • Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslides initiation in soil-mantled landscapes. Earth Surf Process Landf 28:925–950

    Article  Google Scholar 

  • Casini F, Serri V, Springman SM (2013) Hydromechanical behaviour of a silty sand from a steep slope triggered by artificial rainfall: from unsaturated to saturated conditions. Can Geotech J 50(1):28–40

    Article  Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2014) The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull Eng Geol Environ 73:859–875

    Article  Google Scholar 

  • Chae BG, Kim MI (2012) Suggestion of a method for landslide early warning using the change in the volumetric water content gradient due to rainfall infiltration. Environ Earth Sci 66:1973–1986

    Article  Google Scholar 

  • Chen HX, Zhang LM (2014) A physically-based distributed cell model for predicting regional rainfall-induced slope failures. Eng Geol 176:79–92

    Article  Google Scholar 

  • Chen CY, Chen TC, Yu WH, Lin SC (2005) Analysis of time-varying rainfall infiltration induced landslide. Environ Geol 48:466–479

    Article  Google Scholar 

  • Cho SE (2009) Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics. Eng Geol 105:32–43

    Article  Google Scholar 

  • Cho SE, Lee SR (2001) Instability of unsaturated soil slopes due to infiltration. Comput Geotech 28:185–208

    Article  Google Scholar 

  • Cho SE, Lee SR (2002) Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. J Geotech Geoenviron 128(9):756–763

    Article  Google Scholar 

  • Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced landslides. J Geotech Geoenviron 130(4):362–372

    Article  Google Scholar 

  • Damiano E, Olivares L (2010) The role of infiltration processes in steep slope stability of pyroclastic granular soils: laboratory and numerical investigation. Nat Hazards 52(2):329–350

    Article  Google Scholar 

  • Fan XM, Xu Q, Zhang ZY, Meng DS, Tang R (2009) The genetic mechanism of a translational landslide. Bull Eng Geol Environ 68(2):231–244

    Article  Google Scholar 

  • Fourie AB (1996) Predicting rainfall-induced slope instability. Proc ICE-Geotech Eng 119(4):211–218

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  • Gao L, Zhang LM, Chen HX (2015) Likely scenarios of natural terrain shallow slope failures on Hong Kong Island under extreme storms. Nat Hazards Rev. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000207,B4015001

    Article  Google Scholar 

  • Garcia E, Oka F, Kimoto S (2011) Numerical analysis of a one-dimensional infiltration problem in unsaturated soil by a seepage–deformation coupled method. Int J Numer Anal Meth Geomech 35(5):544–568

    Article  MATH  Google Scholar 

  • Geo-slope Ltd (2007) Seep/W for finite element seepage analysis: user’s guide. Calgary, Geo-slope Ltd

    Google Scholar 

  • Godt JW, Baum RL, Lu N (2009) Landsliding in partially saturated materials. Geophys Res Lett 36:L02403

    Article  Google Scholar 

  • Griffiths DV, Lu N (2005) Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int J Numer Anal Met 29:249–267

    Article  MATH  Google Scholar 

  • Guns M, Vanacker V (2013) Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ Earth Sci 70(7):2941–2952

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Cipollab F, Sebastianib C, Gallia M, Salvatia P (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng Geol 73(3):229–245

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides. Meteorol Atmos Phys 98(3):239–267

    Article  Google Scholar 

  • Hird CC, Hassona FAK (1990) Some factors affecting the liquefaction and flow of saturated sands in laboratory tests. Eng Geol 28:149–170

    Article  Google Scholar 

  • Hong Y, Hiura H, Shino K, Sassa K, Fukuoka H (2005) Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring system-case study on Zentoku landslide Japan. Landslides 2:31–41

    Article  Google Scholar 

  • Hu R, Chen Y, Zhou C (2011) Modeling of coupled deformation, water flow and gas transport in soil slopes subjected to rain infiltration. Sci China Technol Sci 54(10):2561

    Article  MATH  Google Scholar 

  • Huang RQ (2012) Mechanisms of large-scale landslides in China. Bull Eng Geol Environ 71(1):161–170

    Article  Google Scholar 

  • Huang CC, Yuin SC (2010) Experimental investigation of rainfall criteria for shallow slope failures. Geomorphology 120:326–338

    Article  Google Scholar 

  • Huang CC, Lo CL, Jang JS, Hwu LK (2008) Internal soil moisture response to rainfall-induced slope failures and debris discharge. Eng Geol 101:134–145

    Article  Google Scholar 

  • Huang J, Wu P, Zhao X (2013) Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. CATENA 104:93–102

    Article  Google Scholar 

  • Igwe O, Mode W, Nnebedum O, Okonkwo I, Oha I (2014) The analysis of rainfall-induced slope failures at Iva Valley area of Enugu State, Nigeria. Environ Earth Sci 71(5):2465–2480

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Iverson RM, Reid ME (1992) Gravity-driven ground water flow and slope failure potential. 1. Elastic effective-stress model. Water Resour Res 28:925–938

    Article  Google Scholar 

  • Kim J, Jeong S, Park S, Sharma J (2004) Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Eng Geol 75:251–262

    Article  Google Scholar 

  • Lacerda WA (2007) Landslide initiation in saprolite and colluvium in southern Brazil: field and laboratory observations. Geomorphology 87:104–119

    Article  Google Scholar 

  • Lee LM, Gofar N, Rahardjo H (2009) A simple model for preliminary evaluation of rainfall-induced slope instability. Eng Geol 108:272–285

    Article  Google Scholar 

  • Lee LM, Kassim A, Gofar N (2011) Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils. Eng Geol 117(1–2):78–89

    Article  Google Scholar 

  • Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley & Sons, Chichester

    Google Scholar 

  • Li JH, Zhang LM, Wang Y, Fredlund DG (2009) Permeability tensor and REV of saturated cracked soil. Can Geotech J 46(8):928–942

    Article  Google Scholar 

  • Li WC, Lee LM, Cai H, Li HJ, Dai FC, Wang ML (2013) Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Eng Geol 153:105–113

    Article  Google Scholar 

  • Li WC, Lee LM, Cai H, Li HJ, Dai FC, Wang ML (2013b) Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Eng Geol 153(8):105–113

    Article  Google Scholar 

  • Lloret A, Gens A, Batlle F, Alonso EE (1987) Flow and deformation analysis of partially saturated soils. In: Proceedings 9th European conference on soil mechanics, vol 2, Dublin, pp 565–568

    Google Scholar 

  • Lourenco SDN, Sassa K, Fukuoka H (2006) Failure process and hydrologic response of a two layer physical model: implications for rainfall-induced landslides. Geomorphology 73(1–2):115–130

    Article  Google Scholar 

  • Ltd Geo-slope (2007) Slope/W for slope stability analysis: user’s guide. Geo-slope Ltd., Calgary

    Google Scholar 

  • Lu N, Godt J (2008) Infinite slope stability under steady unsaturated seepage conditions. Water Resour Res 44:W11404

    Google Scholar 

  • Lumb (1962) Effect of rainstorm on slope stability. In: Proceedings of symposium Hong Kong Soils, Hong Kong, pp 73–87

    Google Scholar 

  • Major JJ, Iverson RM (1999) Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins. Geol Soc Am Bull 111:1424–1434

    Article  Google Scholar 

  • Matsushi Y, Hattanji T, Matsukura Y (2006) Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology 76:92–108

    Article  Google Scholar 

  • Miao HB, Wang GH, Yin KL, Kamai T, Li YY (2014) Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng Geol 171:59–69

    Article  Google Scholar 

  • Moriwaki H, Inokuchi T, Hattanji T, Sassa K, Ochiai H, Wang G (2004) Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 1:277–288

    Article  Google Scholar 

  • Mualem Y, Dagan G (1978) Hydraulic conductivity of soils: unified approach to the statistical models. Soil Sci Soc Am J 42:392–395

    Article  Google Scholar 

  • Muntohar AS, Liao HJ (2009) Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological–geotechnical model. Environ Geol 56:1145–1159

    Article  Google Scholar 

  • Muntohar AS, Liao HJ (2010) Rainfall infiltration: infinite slope model for landslides triggering by rainstorm. Nat Hazards 54:967–984

    Article  Google Scholar 

  • Murthy VNS (2002) Geotechnical engineering: principles and practices of soil mechanics and foundation engineering. CRC Press

    Google Scholar 

  • Ng CWW, Shi Q (1998) A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput Geotech 22(1):1–28

    Article  Google Scholar 

  • Ng CWW, Zhan LT, Bao CG, Fredlund DG, Gong BW (2003) Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration. Geotechnique 53(2):143–157

    Article  Google Scholar 

  • Ochiai H, Okada Y, Furuya G, Okura Y, Matsui T, Sammori T, Terajima T, Sassa K (2004) A fluidized landslide on a natural slope by artificial rainfall. Landslides 1:211–219

    Article  Google Scholar 

  • Okura Y, Kitahara H, Ochiai H, Sammori T, Kawanami A (2002) Landside fludization process by flume experiments. Eng Geol 66:65–78

    Article  Google Scholar 

  • Olivares L, Damiano E, Greco R, Zeni L, Picarelli L, Minardo A, Guida A, Bernini R (2009) An instrumented flume to investigate the mechanics of rainfall-induced landslides in unsaturated granular soils. Geotech Test J 32(2):108–118

    Google Scholar 

  • Peng JB, Fan ZJ, Wu D, Zhuang JQ, Dai FC, Chen WW, Zhao C (2015) Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui. China. Eng Geol 186(24):79–90

    Article  Google Scholar 

  • Polemio M, Sdao F (1999) The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy). Eng Geol 53(3–4):297–309

    Article  Google Scholar 

  • Rahardjo H, Lim TT, Chang MF, Fredlund DG (1995) Shear-strength characteristics of a residual soil. Can Geotech J 32(1):60–77

    Article  Google Scholar 

  • Ray R, Jacobs J, de Alba P (2010) Impacts of unsaturated zone soil moisture and groundwater table on slope instability. J Geotech Geoenviron Eng 136(10):1448–1458

    Article  Google Scholar 

  • Reid ME, Iverson RM (1992) Gravity-driven groundwater flow and slope failure potential 2. Effects of slope morphology, material properties, and hydraulic heterogeneity. Water Resour Res 28:939–950

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  MATH  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266

    Article  Google Scholar 

  • Shi JS, Wu LZ, Wu SR, Li B, Wang T, Xin P (2016) Analysis of the causes of large-scale loess landslides in Baoji, China. Geomorphology 264:109–117

    Article  Google Scholar 

  • Sorbino G, Nicotera MV (2013) Unsaturated soil mechanics in rainfall-induced flow landslides. Eng Geol 165:105–132

    Article  Google Scholar 

  • Spence KJ, Guymer I (1997) Small-scale laboratory flowslides. Geotechnique 47:915–932

    Article  Google Scholar 

  • Springman S, Kienzler P, Casini F, Askarinejad A (2009) Landslide triggering experiment in a steep forested slope in Switzerland. In: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering: the academia and practice of geotechnical engineering 2, pp 1698–1701

    Google Scholar 

  • Springman S, Askarinejad A, Casini F, Friedel S, Kienzler P, Teysseire P, Thielen A (2012) Lessons learnt from field tests in some potentially unstable slopes in Switzerland. Acta Geotech Slov 1:5–29

    Google Scholar 

  • Tang HM, Yong R, Ez Eldin MAM (2016) Stability analysis of stratified rock slopes with spatially variable strength parameters: the case of Qianjiangping landslide. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-016-0876-4

    Article  Google Scholar 

  • Tsai TL (2008) The influence of rainstorm pattern on shallow landslide. J Environ Geol 53(7):1563–1569

    Article  Google Scholar 

  • Tsai TL (2011) Influences of soil water characteristic curve on rainfall-induced shallow landslides. Environ Earth Sci 64(2):449–459

    Article  Google Scholar 

  • Tsai TL, Chen HF (2010) Effects of degree of saturation on shallow landslides triggered by rainfall. Environ Earth Sci 59(6):1285–1295

    Article  Google Scholar 

  • Tsai TL, Chiang SJ (2013) Modeling of layered infinite slope failure triggered by rainfall. Environ Earth Sci 68(5):1429–1434

    Article  Google Scholar 

  • Tsai TL, Wang JK (2011) Examination of influences of rainfall patterns on shallow landslides due to dissipation of matric suction. Environ Earth Sci 63:65–75

    Article  Google Scholar 

  • Tsai TL, Yang JC (2006) Modeling of rainfall-triggered shallow landslide. Environ Geol 50(4):525–534

    Article  Google Scholar 

  • Tu XB, Kwong AKL, Dai FC, Tham LG, Min H (2009) Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall induced landslides. Eng Geol 105:134–150

    Article  Google Scholar 

  • Van Asch ThWJ, Buma J, Van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32

    Article  Google Scholar 

  • van Genuchten MY (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Wang G, Sassa K (2001) Factors affecting rainfall-induced flowslides in laboratory flume tests. Géotechnique 51(7):587–599

    Article  Google Scholar 

  • Wang G, Sassa K (2003) Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Eng Geol 69:109–125

    Article  Google Scholar 

  • Wang F, Shibatab H (2007) Influence of soil permeability on rainfall-induced flowslides in laboratory flume tests. Can Geotech J 44(9):1128–1136

    Article  Google Scholar 

  • Wang LP, Zhang G (2014) Progressive failure behavior of pile-reinforced clay slopes under surface load conditions. Environ Earth Sci 71(12):5007–5016

    Article  Google Scholar 

  • Wang HB, Zhou B, Wu SR, Shi JS (2011) Characteristic analysis of large-scale loess landslides: a case study in Baoji City of Loess Plateau of Northwest China. Nat Hazards Earth Sci 11:1829–1837

    Article  Google Scholar 

  • Wang GH, Zhang DX, Furuya G, Yang J (2014a) Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: a case study. Eng Geol 174(23):36–45

    Article  Google Scholar 

  • Wang JJ, Liang JY, Zhang HP, Wu Y, Lin X (2014b) A loess landslide induced by excavation and rainfall. Landslides 11(1):141–152

    Article  Google Scholar 

  • White JA, Singham DI (2012) Slope stability assessment using stochastic rainfall simulation. Procedia Comput Sci 9:699–706

    Article  Google Scholar 

  • White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53:619–631

    Article  Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM (2000) An integrated hydrological model for rain-induced landslide prediction. Earth Surf Process Landf 27:1285–1297

    Article  Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31(8):2097–2110

    Article  Google Scholar 

  • Wu LZ, Huang RQ, Xu Q, Zhang LM, Li HL (2015) Analysis of physical testing of rainfall-induced soil slope failures. Environ Earth Sci 73(12):8519–8531

    Article  Google Scholar 

  • Wu LZ, Zhang LM (2009) Analytical solution to 1D coupled water infiltration and deformation in unsaturated soils. Int J Numer Anal Meth Geomech 33(6):773–790

    Article  MATH  Google Scholar 

  • Wu LZ, Liu GG, Wang LC, Zhang LM, Li BE, Li B (2016) Numerical analysis of 1D coupled infiltration and deformation in layered unsaturated porous medium. Environ Earth Sci 75:761. https://doi.org/10.1007/s12665-016-5579-4

    Article  Google Scholar 

  • Wu LZ, Zhou Y, Sun P, Shi JS, Liu GG, Bai LY (2017) Laboratory characterization of rainfall-induced loess slope failure. CATENA 150:1–8

    Article  Google Scholar 

  • Xu L, Qiao XJ, Wu CX, Iqbal J, Dai FC (2012) Causes of landslide recurrence in a loess platform with respect to hydrological processes. Nat Hazards 64:1657–1670

    Article  Google Scholar 

  • Xu L, Dai FC, Tu XB, Javed I, Woodard MJ, Jin YL, Tham LG (2013) Occurrence of landsliding on slopes where flow sliding had previously occurred: An investigation in a loess platform, North-west China. CATENA 104:195–209

    Article  Google Scholar 

  • Yeh HF, Lee CH (2013) Soil water balance model for precipitation-induced shallow landslides. Environ Earth Sci 70(6):2691–2701

    Article  Google Scholar 

  • Yin YP, Cheng YL, Liang JT, Wang WP (2016) Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake. Landslides 13(1):9–23

    Article  Google Scholar 

  • Zhan LT, Ng CWW, Fredlund DG (2007) Field study of rainfall infiltration into a grassed unsaturated expansive soil slope. Can Geotech J 44:392–408

    Article  Google Scholar 

  • Zhan TLT, Jia GW, Chen YM, Fredlund DG, Li H (2013) An analytical solution for rainfall infiltration into an unsaturated infinite slope and its application to slope stability analysis. Int J Numer Anal Meth Geomech 37(12):1737–1760

    Article  Google Scholar 

  • Zhang MS, Liu J (2010) Controlling factors of loess landslides in western China. Environ Earth Sci 59:1671–1680

    Article  Google Scholar 

  • Zhang LL, Zhang LM, Tang WH (2005) Rainfall-induced slope failure considering variability of soil properties. Geotechnique 55(2):183–188

    Article  Google Scholar 

  • Zhang SL, Lövdahl L, Grip H, Tong YN (2007) Hydraulic properties of two loess soils in China measured by various field-scale and laboratory methods. CATENA 69(3):264–273

    Article  Google Scholar 

  • Zhang LL, Zhang J, Zhang LM, Tang WH (2011a) Stability analysis of rainfall-induced slope failures: a review. P I Civil Eng-Geotec 164(5):299–316

    Article  Google Scholar 

  • Zhang LL, Zhang J, Zhang LM, Tang WH (2011b) Stability analysis of rainfall-induced slope failures: a review. Proc ICE-Geotech Eng 164(5):299–316

    Article  Google Scholar 

  • Zhang S, Zhang LM, Peng M, Zhang LL, Zhao HF, Chen HX (2012) Assessment of risks of loose landslide deposits formed by the 2008 Wenchuan earthquake. Nat Hazard Earth Sys 12:1381–1392

    Article  Google Scholar 

  • Zhang S, Zhang LM, Glade T (2014) Characteristics of earthquake- and rain-induced landslides near the epicenter of Wenchuan Earthquake. Eng Geol 175:58–73

    Article  Google Scholar 

  • Zhao HF, Zhang LM (2014) Instability of saturated and unsaturated coarse granular soils. J Geotech Geoenviron Eng 140(1):25–35

    Article  Google Scholar 

  • Zhou CB (2011) Modeling of coupled deformation, water flow and gas transport in soil slopes subjected to rain infiltration. Sci China-Technol Sci 54(10):2561–2575

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhou Wu .

Appendix

Appendix

Applying the Laplace transform and replacing W by \( \bar{W} \), Eq. (6.20) becomes

$$ \frac{{\partial^{2} \bar{W}}}{{\partial z^{2} }} + \frac{{\partial \bar{W}}}{\partial z} - s\bar{W} + W_{0} = 0 $$
(6.60)

The bottom boundary condition (Eq. (6.21b)) and surface top boundary condition (Eq. (6.21c)) for the soil slope are given by

$$ \bar{W}\left( 0 \right) = \frac{{e^{{\alpha \psi_{0} }} }}{s} $$
(6.61)
$$ \left. {\frac{{\partial \bar{W}}}{\partial z} - s\bar{W}} \right|_{z = L} = \frac{{q_{B} }}{s} $$
(6.62)

The general solution to Eq. (6.60) with the boundary conditions that are described by Eqs. (6.61) and (6.62) is expressed as

$$ \bar{W} = \frac{{W_{0} \left( z \right)}}{s} + \left( {q_{B} - q_{A} } \right)e^{{{{\left( {L - z} \right)} \mathord{\left/ {\vphantom {{\left( {L - z} \right)} 2}} \right. \kern-0pt} 2}}} G\left( s \right) $$
(6.63)

in which

$$ G\left( s \right) = \frac{1}{s}\frac{{\sinh \left[ {z\left( {s + 0.25} \right)^{0.5} } \right]}}{{\left( {s + 0.25} \right)^{0.5} \cosh \left[ {L\left( {s + 0.25} \right)^{0.5} } \right] + 0.5\sinh \left[ {L\left( {s + 0.25} \right)^{0.5} } \right]}} $$
(6.64)

The inversion of G(s) is achieved by using the residue theorem as the sum of residues of eSlG(s) at the poles of G(s). The residue at s = 0 is e–(L−z)/2 − e−(L+z)/2. The other poles are acquired by assigning (s + 0.25)1/2 as a complex number. All the poles are at pure imaginary values of (s + 0.25)1/2 that is a function of i\( \lambda \). We can obtain \( \lambda \) that satisfies the positive roots of the characteristic equation as follows:

$$ \tan \left( {\lambda L} \right) + 2\lambda = 0, $$
(6.65)

and the residue at \( \lambda_{n} \), which is the nth root of Eq. (6.65), can be written as

$$ = - \frac{{4\sin \left( {L\lambda_{n} } \right)\sin \left( {\lambda_{n} z} \right)e^{{ - \left( {0.25 + \lambda_{n}^{2} } \right)t}} }}{{1 + 0.5L + 2L\lambda_{n}^{2} }}. $$
(6.66)

The equation for W, i.e., Equation (6.22), is therefore obtained.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, L., Huang, R., Li, X. (2020). Slope Stability Analysis Based on Coupled Approach. In: Hydro-mechanical Analysis of Rainfall-Induced Landslides. Springer, Singapore. https://doi.org/10.1007/978-981-15-0761-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0761-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0760-1

  • Online ISBN: 978-981-15-0761-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics