Skip to main content

Autophagy Regulation of Bacterial Pathogen Invasion

  • Chapter
  • First Online:
Autophagy Regulation of Innate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1209))

Abstract

Autophagy pathway is highly conserved in all eukaryotic species and responsible for targeting of cytosol components, such as protein aggregates, damaged or unnecessary organelles, and intracellular bacterial pathogens for lysosome-dependent degradation. Besides severing as a catabolic process, autophagy pathway furthermore has been discovered to function pivotally in both innate and adaptive immune responses. At present, it has been well demonstrated that certain types of bacteria could be targeted by autophagy upon their invasion. However, several bacterial pathogens have developed strategies to evade this degradation and clearance. Here, we review the role and mechanism of autophagy in the regulation of bacteria invasion, which may facilitate the designing of clinical drugs for efficient and safe cure of infection diseases caused by toxic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abert C, Martens S (2019) Studies of receptor-Atg8 interactions during selective autophagy. Methods Mol Biol 1880:189–196

    Article  CAS  PubMed  Google Scholar 

  2. Abreu S, Kriegenburg F, Gomez-Sanchez R, Mari M, Sanchez-Wandelmer J, Skytte RM, Soares GR, Zens B, Schuschnig M, Hardenberg R et al (2017) Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation. EMBO Rep 18:765–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Backer JM (2016) The intricate regulation and complex functions of the class III phosphoinositide 3-kinase Vps34. Biochem J 473:2251–2271

    Article  CAS  PubMed  Google Scholar 

  4. Behrends C, Fulda S (2012) Receptor proteins in selective autophagy. Int J Cell Biol 2012:673290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bilanges B, Posor Y, Vanhaesebroeck B (2019) PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 20:515–534

    Article  CAS  PubMed  Google Scholar 

  6. Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cappelletti C, Galbardi B, Kapetis D, Vattemi G, Guglielmi V, Tonin P, Salerno F, Morandi L, Tomelleri G, Mantegazza R et al (2014) Autophagy, inflammation and innate immunity in inflammatory myopathies. PLoS One 9:e111490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chaumorcel M, Souquere S, Pierron G, Codogno P, Esclatine A (2008) Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy 4:46–53

    Article  CAS  PubMed  Google Scholar 

  9. Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW (2017) TAX1BP1 restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol 37

    Google Scholar 

  10. Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ, Roy CR (2012) The legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Paepe B, Creus KK, De Bleecker JL (2009) Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr Opin Rheumatol 21:610–616

    Article  PubMed  CAS  Google Scholar 

  12. Deretic V (2012) Autophagy: an emerging immunological paradigm. J Immunol 189:15–20

    Article  CAS  PubMed  Google Scholar 

  13. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  14. Dorn BR, Dunn WA, Progulske-Fox A (2001) Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect Immun 69:5698–5708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dortet L, Mostowy S, Louaka AS, Gouin E, Nahori M, Wiemer EAC, Dussurget O, Cossart P (2011) Recruitment of the major vault protein by InlK: a listeria monocytogenes strategy to avoid autophagy. Plos Pathog 7

    Google Scholar 

  16. English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippe R et al (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10:480–487

    Article  CAS  PubMed  Google Scholar 

  17. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388

    Article  CAS  PubMed  Google Scholar 

  18. Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B (2017) The ubiquitin ligase Smurf1 functions in selective autophagy of mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 22:421–423

    Article  CAS  PubMed  Google Scholar 

  19. Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y, Hirano H, Akada R, Inagaki F, Ohsumi Y, Noda NN (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21:513–521

    Article  CAS  PubMed  Google Scholar 

  20. Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF et al (2016) The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J Cell Mol Med 20:1392–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge L, Melville D, Zhang M, Schekman R (2013) The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2:e947

    Article  Google Scholar 

  22. Gluschko A, Herb M, Wiegmann K, Krut O, Neiss WF, Utermohlen O, Kronke M, Schramm M (2018) The beta2 Integrin Mac-1 Induces Protective LC3-associated phagocytosis of listeria monocytogenes. Cell Host Microbe 23:324–337

    Article  CAS  PubMed  Google Scholar 

  23. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  CAS  PubMed  Google Scholar 

  24. Hashimoto K, Simmons AN, Kajino-Sakamoto R, Tsuji Y, Ninomiya-Tsuji J (2016) TAK1 regulates the Nrf2 antioxidant system through modulating p62/SQSTM1. Antioxid Redox Sig 25:953–964

    Article  CAS  Google Scholar 

  25. Hayashi K, Taura M, Iwasaki A (2018) The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci Sig 11

    Google Scholar 

  26. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN Mitochondrial ubiquitination pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60:7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269

    Article  CAS  PubMed  Google Scholar 

  28. Jin M, Klionsky DJ (2014) Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett 588:2457–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS, Kim DH (2015) mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 57:207–218

    Article  CAS  PubMed  Google Scholar 

  30. Levine B, Liu R, Dong X, Zhong Q (2015) Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol 25:533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu W, Jiang Y, Sun J, Geng S, Pan Z, Prinz RA, Wang C, Sun J, Jiao X, Xu X (2018) Activation of TGF-beta-activated kinase 1 (TAK1) restricts Salmonella Typhimurium growth by inducing AMPK activation and autophagy. Cell Death Dis 9:570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR (2011) Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 108:17396–17401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinez J, Malireddi RKS, Lu Q, Cunha LD, Pelletier S, Gingras S, Orchard R, Guan J, Tan H, Peng J et al (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda DSD, Bhogaraju S, Maddi K et al (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54

    Article  CAS  PubMed  Google Scholar 

  36. Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I (2017) Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J 36:3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura S, Yoshimori T (2017) New insights into autophagosome-lysosome fusion. J Cell Sci 130:1209–1216

    Article  CAS  PubMed  Google Scholar 

  40. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen TD, Shaid S, Vakhrusheva O, Koschade SE, Klann K, Tholken M, Baker F, Zhang J, Oellerich T, Surun D et al (2019) Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy. Blood 133:168–179

    Article  CAS  PubMed  Google Scholar 

  42. Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S, Nakagawa I (2012) The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during group A Streptococcus infection. Cell Microbiol 14:1149–1165

    Article  CAS  PubMed  Google Scholar 

  43. Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S et al (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376–389

    Article  CAS  PubMed  Google Scholar 

  44. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    Article  CAS  PubMed  Google Scholar 

  45. Peng H, Yang J, Li G, You Q, Han W, Li T, Gao D, Xie X, Lee BH, Du J et al (2017) Ubiquitination of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res 27:657–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z (2009) Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 297:F244–F256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petkova DS, Verlhac P, Rozieres A, Baguet J, Claviere M, Kretz-Remy C, Mahieux R, Viret C, Faure M (2017) Distinct contributions of autophagy receptors in measles virus replication. Viruses 9

    Google Scholar 

  48. Piano ME, Folgiero V, Marcellini V, Romania P, Bellacchio E, D’Alicandro V, Bocci C, Carrozzo R, Martinelli D, Petrini S et al (2018) The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity. Autophagy 14:22–37

    Article  CAS  Google Scholar 

  49. Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125

    Article  CAS  PubMed  Google Scholar 

  50. Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194:341–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodrigues PH, Belanger M Jr, Dunn W, Progulske-Fox A (2008) Porphyromonas gingivalis and the autophagic pathway: an innate immune interaction? Front Biosci-Landmrk 13:178–187

    Article  CAS  PubMed  Google Scholar 

  52. Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178

    Article  CAS  PubMed  Google Scholar 

  53. Romao S, Gasser N, Becker AC, Guhl B, Bajagic M, Vanoaica D, Ziegler U, Roesler J, Dengjel J, Reichenbach J et al (2013) Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol 203:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ryabovol VV, Minibayeva FV (2016) Molecular mechanisms of autophagy in plants: role of ATG8 proteins in formation and functioning of autophagosomes. Biochem (Mosc) 81:348–363

    Article  CAS  Google Scholar 

  55. Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N, Shintani S, Hamada S, Ooshima T, Nakagawa I (2010) Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 285:22666–22675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Slowicka K, Vereecke L, Mc GC, Sze M, Maelfait J, Kolpe A, Saelens X, Beyaert R, van Loo G (2016) Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-kappaB signaling. Eur J Immunol 46:971–980

    Article  CAS  PubMed  Google Scholar 

  57. Slowicka K, van Loo G (2018) Optineurin functions for optimal immunity. Front Immunol 9:769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Suzuki H, Osawa T, Fujioka Y, Noda NN (2017) Structural biology of the core autophagy machinery. Curr Opin Struct Biol 43:10–17

    Article  CAS  PubMed  Google Scholar 

  59. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tilija PN, Park PH (2017) Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: involvement of autophagy and p21/Nrf2 axis. Sci Rep 7:393

    Article  CAS  Google Scholar 

  61. Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F (2015) The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella Typhimurium by autophagy. PLoS Pathog 11:e1005174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wan W, You Z, Zhou L, Xu Y, Peng C, Zhou T, Yi C, Shi Y, Liu W (2018) mTORC1-regulated and HUWE1-mediated WIPI2 degradation controls autophagy flux. Mol Cell 72:303–315

    Article  CAS  PubMed  Google Scholar 

  63. Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu Y, Eissa NT (2010) Autophagy in innate and adaptive immunity. Proc Am Thorac Soc 7:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N et al (2008) Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 9:908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yue C, Li J, Jin H, Hua K, Zhou W, Wang Y, Cheng G, Liu D, Xu L, Chen Y et al (2019) Autophagy is a defense mechanism inhibiting invasion and inflammation during high-virulent haemophilus parasuis infection in PK-15 cells. Front Cell Infect Microbiol 9:93

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhao YG, Zhang H (2019) Autophagosome maturation: an epic journey from the ER to lysosomes. J Cell Biol 218:757–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank members from K.F. Lu laboratory for advice and help in preparing the manuscript. The K.F. Lu laboratory was supported by the National Key R&D Program of China under grant 2017YFA0506300 (to K.L.) and the National Natural Science Foundation under grants 31770820 (to K.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, Y., Li, H., Lu, K. (2019). Autophagy Regulation of Bacterial Pathogen Invasion. In: Cui, J. (eds) Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology, vol 1209. Springer, Singapore. https://doi.org/10.1007/978-981-15-0606-2_4

Download citation

Publish with us

Policies and ethics