Skip to main content

Autophagy and Ubiquitin-Proteasome System

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Millions of protein molecules are synthesized per minute in each cell, and simultaneously, millions of protein molecules are degraded. Mutated and misfolded newly synthesized proteins are rapidly degraded to prevent the toxicity caused by the accumulation of these protein fragments. There are two main mechanisms of intracellular protein degradation: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP). There is a certain relationship between these two mechanisms, and there are some molecules that initiate compensatory effects to prevent disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown R, Kaganovich D (2016) Look out autophagy, ubiquilin UPS its game. Cell 166:797–799

    Article  CAS  Google Scholar 

  • Cao DJ, Jiang N, Blagg A et al (2013) Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J Am Heart Assoc 2:e000016

    Article  Google Scholar 

  • Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185

    Article  Google Scholar 

  • Deger JM, Gerson JE, Kayed R (2015) The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 14:715–724

    Article  CAS  Google Scholar 

  • Diao J, Liu R, Rong Y et al (2015) ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563–566

    Article  CAS  Google Scholar 

  • Du YL, Yang DH, Li L et al (2009) An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 5:663–675

    Article  CAS  Google Scholar 

  • Guo F, He XB, Li S et al (2017) A central role for phosphorylated p38alpha in linking proteasome inhibition-induced apoptosis and autophagy. Mol Neurobiol 54:7597–7609

    Article  CAS  Google Scholar 

  • Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17:829–838

    Article  CAS  Google Scholar 

  • Isakson P, Holland P, Simonsen A (2013) The role of ALFY in selective autophagy. Cell Death Differ 20:12–20

    Article  CAS  Google Scholar 

  • Lazo PA (2017) Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 33:49–58

    Article  CAS  Google Scholar 

  • Leyk J, Goldbaum O, Noack M et al (2015) Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci 55:1031–1046

    Article  CAS  Google Scholar 

  • Liu J, Su H, Wang X (2016) The COP9 signalosome coerces autophagy and the ubiquitin-proteasome system to police the heart. Autophagy 12:601–602

    Article  CAS  Google Scholar 

  • Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C et al (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26:869–885

    Article  CAS  Google Scholar 

  • Maiese K (2016) Regeneration in the nervous system with erythropoietin. Front Biosci (Landmark Ed) 21:561–596

    Article  CAS  Google Scholar 

  • Minoia M, Boncoraglio A, Vinet J et al (2014) BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10:1603–1621

    Article  CAS  Google Scholar 

  • Park HJ, Ryu D, Parmar M et al (2017) The ER retention protein RER1 promotes alpha-synuclein degradation via the proteasome. PLoS ONE 12:e0184262

    Article  Google Scholar 

  • Rivero-Rios P, Madero-Perez J, Fernandez B et al (2016) Targeting the autophagy/lysosomal degradation pathway in Parkinson’s disease. Curr Neuropharmacol 14:238–249

    Article  CAS  Google Scholar 

  • Russo R, Varano GP, Adornetto A et al (2018) Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival. Cell Death Dis 9:981

    Article  Google Scholar 

  • Sarraf SA, Raman M, Guarani-Pereira V et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376

    Article  CAS  Google Scholar 

  • Sasazawa Y, Sato N, Umezawa K et al (2015) Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy. J Biol Chem 290:6168–6178

    Article  CAS  Google Scholar 

  • Sulistio YA, Heese K (2016) The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol 53:905–931

    Article  CAS  Google Scholar 

  • Tan CC, Yu JT, Tan MS et al (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35:941–957

    Article  Google Scholar 

  • Vuppalapati KK, Bouderlique T, Newton PT et al (2015) Targeted deletion of autophagy genes Atg5 or Atg7 in the chondrocytes promotes caspase-dependent cell death and leads to mild growth retardation. J Bone Miner Res 30:2249–2261

    Article  CAS  Google Scholar 

  • Wang DT, Yang YJ, Huang RH et al (2015) Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxid Med Cell Longev 2015:684965

    PubMed  PubMed Central  Google Scholar 

  • Willis MS, Bevilacqua A, Pulinilkunnil T et al (2014) The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 71:43–53

    Article  CAS  Google Scholar 

  • Zaffagnini G, Savova A, Danieli A et al (2018) Phasing out the bad—how SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy. Autophagy 14:1280–1282

    Article  CAS  Google Scholar 

  • Zhang XJ, Li L, Chen S et al (2011) Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7:412–425

    Article  CAS  Google Scholar 

  • Zhang XJ, Chen S, Song L et al (2014) MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 10:588–602

    Article  CAS  Google Scholar 

  • Zhou JS, Zhao Y, Zhou HB et al (2016) Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium. Am J Physiol Lung Cell Mol Physiol 310:L1042–1052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Le, WD. (2019). Autophagy and Ubiquitin-Proteasome System. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_25

Download citation

Publish with us

Policies and ethics