Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 582))

  • 2515 Accesses

Abstract

Accurate retinal vessel segmentation technology plays a critical role due to the changes in retinal blood vessels can be used to diagnose certain diseases. In this paper, we propose an application based on a new convolutional neural network for extracting retinal vessel particularly capillaries, which preserves image details as much as possible with different feature information. We evaluated this model on the DRIVE databases. Our results indicate that the network outperforms most competing approaches in term of accuracy, sensitivity, specificity, F1-score, the area under the ROC curve (AUC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  2. Li, Q., Feng, B., Xie, L.P., et al.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  3. Kassim, Y.M., Palaniappan, K.: Extracting retinal vascular networks using deep learning architecture. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1170–1174, IEEE (2017)

    Google Scholar 

  4. Long J, Shelhamer, E, Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., et al.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645. Springer, Cham (2016)

    Chapter  Google Scholar 

  7. Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  8. Chen, L.C., Zhu, Y., Papandreou, G., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Chapter  Google Scholar 

  9. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  10. Staal, J., Abrmoff, M.D., Niemeijer, M., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  11. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  12. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  13. Marn, D., Aquino, A., Gegndez-Arias, M.E., et al.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  14. Fraz, M.M., Remagnino, P., Hoppe, A., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  15. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)

    Google Scholar 

  16. Dasgupta, A., Singh, S.: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 248–251, IEEE (2017)

    Google Scholar 

  17. Hu, K., Zhang, Z., Niu, X., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Li, J., Zhang, W., Fu, D. (2020). A Retinal Vessel Segmentation Algorithm with Convolutional Neural Network. In: Wang, R., Chen, Z., Zhang, W., Zhu, Q. (eds) Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Lecture Notes in Electrical Engineering, vol 582. Springer, Singapore. https://doi.org/10.1007/978-981-15-0474-7_47

Download citation

Publish with us

Policies and ethics