Skip to main content

Thermochemical Conversion and Valorization of Woody Lignocellulosic Biomass in Hydrothermal Media

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Biomass conversion can provide the sustainable and promising alternative solution for the future energy demands and fuel supply. It can also be a major contributor to the chemical demand by acting as primary source for biofuel and value added chemicals. Thermochemical conversion can be a faster solution for this problem. Lignocellulosic biomass is the more preferred to other biomasses as it has uniform composition and well established models for degradation of its constituents such as Cellulose, Hemicellulose and Lignin. This process of thermochemical conversion of biomass is usually performed in the presence of hydrothermal media like water or acetone at high temperature and high pressure. The woody lignocellulosic biomass has a complex sterochemical structure compared to agricultural residues and energy crops. It is depolymerised into small compounds in sub critical and supercritical conditions to form three distinct phases such as: bio-oil, bio-gas and bio-carbon, which has their own significant role in the biorefinery. Based on the process conditions (temperature, pressure, media) the yield of the phases varies accordingly. According to the physicochemical properties of media, the process can be classified as hydrothermal carbonization, hydrothermal liquefaction and hydrothermal gasification. For the past two decades, significant researches is being reported for thermochemical conversion of various lignocellulosic biomass (hardwood/softwood), agricultural residues, fruit shells, cellulose wastes, industrial co-products, etc. in both wet and dry conditions. Also it was found that the wet biomass conversion results in high yield of various chemicals like alkanes, alkenes ketones, aldehydes, acids, alcohols, phenols, esters, ethers and other aromatic compounds with some amount of polymeric impurities. In this chapter more emphasis is given on the thermochemical conversion of woody biomass, its pre-treatment, hydro processing and refining of the products synthesised. It also focuses on the valorization of the end products obtained from the hydrothermal processing into value added chemicals in the presence of homogeneous and heterogeneous catalysts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev 14(9):2852–2862

    Article  CAS  Google Scholar 

  • Alper K, Tekin K, Karagoz S (2019) Hydrothermal liquefaction of lignocellulosic biomass using potassium fluoride doped alumina. Energy Fuels

    Google Scholar 

  • Amutio M, Lopez G, Aguado R, Bilbao J, Olazar M (2012) Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties. Energy Fuels 26(2):1353–1362

    Article  CAS  Google Scholar 

  • Baccile N, Laurent G, Babonneau F, Fayon F, Titirici MM, Antonietti M (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. J Phys Chem C 113(22):9644–9654

    Article  CAS  Google Scholar 

  • Bajpai P (2016) Structure of lignocellulosic biomass. Pretreatment of lignocellulosic biomass for biofuel production. Springer, Singapore, pp 7–12

    Chapter  Google Scholar 

  • Balat M (2006) Biomass energy and biochemical conversion processing for fuels and chemicals. Energy Sources Part A 28(6):517–525

    Article  CAS  Google Scholar 

  • Baumgardner ME, Vaughn TL, Lakshminarayanan A, Olsen D, Ratcliff MA, McCormick RL, Marchese AJ (2015) Combustion of lignocellulosic biomass based oxygenated components in a compression ignition engine. Energy Fuels 29(11):7317–7326

    Article  CAS  Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Polym Sci 19:797–841

    CAS  Google Scholar 

  • Brown S, Iverson LR, Prasad A, Liu D (1993) Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto international 8(4):45–59

    Article  Google Scholar 

  • Çağlar A, Demirbaş A (2001) Conversion of cotton cocoon shell to liquid products by supercritical fluid extraction and low pressure pyrolysis in the presence of alkalis. Energy Convers Manage 42(9):1095–1104

    Article  Google Scholar 

  • Cheng S, D’cruz I, Wang M, Leitch M, Xu C (2010) Highly efficient liquefaction of woody biomass in hot-compressed alcohol − water co-solvents. Energy Fuels 24(9):4659–4667

    Google Scholar 

  • Chuntanapum A, Yong TLK, Miyake S, Matsumura Y (2008) Behavior of 5-HMF in subcritical and supercritical water. Ind Eng Chem Res 47(9):2956–2962

    Article  CAS  Google Scholar 

  • de Caprariis B, Bavasso I, Bracciale MP, Damizia M, De Filippis P, Scarsella M (2019) Enhanced bio-crude yield and quality by reductive hydrothermal liquefaction of oak wood biomass: effect of iron addition. J Anal Appl Pyrolysis

    Google Scholar 

  • Delmer DP, Amor Y (1995) Cellulose biosynthesis. Plant Cell 7(7):987

    CAS  Google Scholar 

  • Demirbas A (2000) Recent advances in biomass conversion technologies. Energy Edu Sci Technol 6:19–41

    CAS  Google Scholar 

  • Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378

    Article  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482

    Article  CAS  Google Scholar 

  • Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manage 50(7):1746–1760

    Article  CAS  Google Scholar 

  • Dimitriadis A, Bezergianni S (2017) Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sustain Energy Rev 68:113–125

    Article  CAS  Google Scholar 

  • Grilc M, Likozar B, Levec J (2016) Simultaneous liquefaction and hydrodeoxygenation of lignocellulosic biomass over NiMo/Al2O3, Pd/Al2O3, and zeolite Y catalysts in hydrogen donor solvents. ChemCatChem 8(1):180–191

    Article  CAS  Google Scholar 

  • Haarlemmer G, Guizani C, Anouti S, Déniel M, Roubaud A, Valin S (2016) Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel 174:180–188

    Article  CAS  Google Scholar 

  • Hao N, Alper K, Tekin K, Karagoz S, Ragauskas AJ (2019) One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. Bioresour Technol 121500

    Google Scholar 

  • Haripriya GS (2000) Estimates of biomass in Indian forests. Biomass Bioenerg 19(4):245–258

    Article  Google Scholar 

  • Jenkins B, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46

    Article  CAS  Google Scholar 

  • Kanetake T, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol Ind Chem-Plant Equip-Process Eng-Biotechnol 30(8):1113–1122

    Google Scholar 

  • Karagöz S, Bhaskar T, Muto A, Sakata Y (2005) Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84(7–8):875–884

    Article  Google Scholar 

  • Karagöz S, Bhaskar T, Muto A, Sakata Y (2006) Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution. Biores Technol 97(1):90–98

    Article  Google Scholar 

  • Khampuang K, Boreriboon N, Prasassarakich P (2015) Alkali catalyzed liquefaction of corncob in supercritical ethanol–water. Biomass Bioenerg 83:460–466

    Article  CAS  Google Scholar 

  • Koppejan J, Van Loo S (2012) The handbook of biomass combustion and co-firing. Routledge, London

    Book  Google Scholar 

  • Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521

    Article  CAS  Google Scholar 

  • Küçük MM, Ağırtaş S (1999) Liquefaction of Prangmites australis by supercritical gas extraction. Biores Technol 69(2):141–143

    Article  Google Scholar 

  • Liu A, Park Y, Huang Z, Wang B, Ankumah RO, Biswas PK (2006) Product identification and distribution from hydrothermal conversion of walnut shells. Energy Fuels 20(2):446–454

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Biores Technol 83(1):47–54

    Article  CAS  Google Scholar 

  • Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45(22):9473–9483

    Article  CAS  Google Scholar 

  • Miranda I, Pereira H (2007) The variation of chemical composition and pulping yield with age and growth factors in young Eucalyptus globulus. Wood Fiber Sci 34(1):140–145

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889

    Article  CAS  Google Scholar 

  • Mok WSL, Antal MJ Jr (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31(4):1157–1161

    Article  CAS  Google Scholar 

  • Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1167990

    Google Scholar 

  • Pereira H (1988) Variability in the chemical composition of plantation eucalypts (Eucalyptus globulus Labill.). Wood Fiber Sci 20(1):82–90

    Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. The chemistry of solid wood 207:57–126

    Article  CAS  Google Scholar 

  • Promdej C, Chuntanapum A, Matsumura Y (2010) Effect of temperature on tarry material production of glucose in supercritical water gasification. J Jan Inst Energy 89(12):1179–1184

    Article  CAS  Google Scholar 

  • Rabemanolontsoa H, Saka S (2013) Comparative study on chemical composition of various biomass species. RSC Adv 3(12):3946–3956

    Article  CAS  Google Scholar 

  • Ramage J, Scurlock J (1996) Biomass. In: Boyle G (ed) Renewable energy-power for a sustainable future. Oxford University Press, Oxford, UK

    Google Scholar 

  • Ramke HG, Blöhse D, Lehmann HJ, Fettig J (2009). Hydrothermal carbonization of organic waste. In: Cossu R, Diaz LF, Stegman R (eds) Twelfth international waste management and landfill symphosium. Sardina: Pro., CISA pub

    Google Scholar 

  • Sasaki M, Hayakawa T, Arai K, Adschiri T (2003) Measurement of the rate of retro-aldol condensation of D-xylose in subcritical and supercritical water. In: Hydrothermal reactions and techniques, pp. 169–176

    Google Scholar 

  • Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13(1):167–178

    Article  Google Scholar 

  • Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M (2000) Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluids 17(2):145–153

    Article  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433

    Article  CAS  Google Scholar 

  • Sudasinghe N, Cort JR, Hallen R, Olarte M, Schmidt A, Schaub T (2014) Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two-dimensional NMR spectroscopy and FT-ICR mass spectrometry. Fuel 137:60–69

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36(11):4659–4665

    Article  CAS  Google Scholar 

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342

    Article  CAS  Google Scholar 

  • Watanabe M, Sato T, Inomata H, Smith RL Jr, Arai K Jr, Kruse A, Dinjus E (2004) Chemical reactions of C1 compounds in near-critical and supercritical water. Chem Rev 104(12):5803–5822

    Article  CAS  Google Scholar 

  • Yin S, Tan Z (2012) Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions. Appl Energy 92:234–239

    Article  CAS  Google Scholar 

  • Yuan XZ, Li H, Zeng GM, Tong JY, Xie W (2007) Sub-and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture. Energy 32(11):2081–2088

    Article  CAS  Google Scholar 

  • Zhang B, Huang HJ, Ramaswamy S (2007) Reaction kinetics of the hydrothermal treatment of lignin. In: Biotechnology for fuels and chemicals. Humana Press, Clifton, UK, pp. 487–499

    Google Scholar 

  • Zhong C, Wei X (2004) A comparative experimental study on the liquefaction of wood. Energy 29(11):1731–1741

    Article  CAS  Google Scholar 

  • Zhou J, Chen Q, Zhao H, Cao X, Mei Q, Luo Z, Cen K (2009) Biomass-oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnol Adv 27(5):606–611

    Article  CAS  Google Scholar 

  • Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energy Technol 5(1):52–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Chitra Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chitra Devi, V., Mothil, S., Sathish Raam, R., Senthilkumar, K. (2020). Thermochemical Conversion and Valorization of Woody Lignocellulosic Biomass in Hydrothermal Media. In: Praveen Kumar, R., Bharathiraja, B., Kataki, R., Moholkar, V. (eds) Biomass Valorization to Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0410-5_4

Download citation

Publish with us

Policies and ethics