Skip to main content

Analytical Methods in Biodiesel Production

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Biodiesel is a clean burning fuel that can be obtainable from renewable sources and utilized in diesel vehicles. The physical characteristics of biodiesel are indistinguishable from petroleum diesel, therefore, it is currently considered as a best alternative fuel. However, the quality of the biodiesel is very important in order to commercialize and get acceptance for marketing. There is a necessity to undertake a quality analysis of biodiesel to assess the chemical properties. Several existing analytical methods that are to evaluate the characteristics of biodiesel is mainly categorized into chromatographic and spectroscopic methods. Appropriate analytical techniques can be adopted to measure the impurities preciously even at lower concentrations. Hence, this chapter describes the developments in biodiesel analysis including chromatography methods such as gas chromatography (GC), gel permeation chromatography (GPC), liquid chromatography (LC), size exclusion chromatography (SEC), supercritical fluid chromatography (SFC), thin layer chromatography (TLC) and spectroscopic methods such as infra-red (IR) spectroscopy, fluorescence spectroscopy, inductively coupled plasma mass spectrometry (ICP–MS), ultra-violet (UV) spectroscopy and proton nuclear magnetic resonance (P–NMR). Other methods namely viscometry, refractive index, titration for determining free fatty acids, wet chemical methods, enzymatic methods, and methods used to test for oxidation stability and new low-cost and greener alternatives in the analytical field are also discussed. Further, this chapter contemplates the assessment of various available methods, accounting their merits and demerits, and provides some improvements and selection of suitable analytical methods for biodiesel production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen SJ, Ott LS (2012) HPLC method for rapidly following biodiesel fuel transesterification reaction progress using a core-shell column. Anal Bioanal Chem 404:267–272

    Article  CAS  Google Scholar 

  • Ashraf-Khorassani M, Yang J, Rainville P et al (2015) Ultrahigh performance supercritical fluid chromatography of lipophilic compounds with application to synthetic and commercial biodiesel. J Chromatogr B 983–984:94–100

    Article  CAS  Google Scholar 

  • Bailer J, Hueber K (1991) Determination of saponifiable glycerol in bio-diesel. Fresenius J Anal Chem 340(3):186

    Article  CAS  Google Scholar 

  • Bala DD, Misra M, Chidambaram D (2017) Solid-acid catalyzed biodiesel production, Part i: biodiesel synthesis from low quality feedstock. J Clean Prod 142:4169–4177

    Article  CAS  Google Scholar 

  • Baskar G, Gurugulladevi A, Nishanthini T et al (2016) Optimization and kinetics of biodiesel production from mahua oil using manganese doped zinc oxide nanocatalyst. Renew Energy 103:641–646

    Article  CAS  Google Scholar 

  • Caires ARL, Scherer MD, Souza JED et al (2014) The role of viscosity in the fluorescence behavior of the diesel/biodiesel blends. Renew Energy 63:388–391

    Article  CAS  Google Scholar 

  • Chimenez TA, Magalhães KF, Caires AR et al (2012) Fluorescence as an analytical tool for assessing the conversion of oil into biodiesel. J Fluoresc 22:1177–1182

    Article  CAS  Google Scholar 

  • Chopra A, Tewari AK, Vatsala S et al (2011) Determination of polyunsaturated fatty esters (PUFA) in biodiesel by GC/GC–MS and 1H–NMR techniques. J Am Oil Chem Soc 88:1285–1296

    Article  CAS  Google Scholar 

  • Dang Y, Luo X, Wang F et al (2016) Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams. Waste Manag 52:360–366

    Article  CAS  Google Scholar 

  • Dube MA, Zheng S, McLean DD et al (2004) A comparison of attenuated total reflectance-FTIR spectroscopy and GPC for monitoring biodiesel production. J Am Oil Chem Soc 81:599–603

    Article  CAS  Google Scholar 

  • Escorsim AM, Cordeiro CS, Ramos LP et al (2015) Assessment of biodiesel purification using CO2 at high pressures. J Supercrit Fluids 96:68–76

    Article  CAS  Google Scholar 

  • Eskiner M, Bar F, Rossner M et al (2015) Determining the aging degree of domestic heating oil blended with biodiesel by means of dielectric spectroscopy. Fuel 143:327–333

    Article  CAS  Google Scholar 

  • Foglia TA, Jones KC, Phillips JG (2005) Determination of biodiesel and triacylglycerols in diesel fuel by LC. Chromatographia 62:115–119

    Article  CAS  Google Scholar 

  • Freedman B, Pryde EH, Kwolek WF (1984) Thin layer chromatography/flame ionization analysis of transesterified vegetables oils. J Am Oil Chem Soc 61:1215–1220

    Article  CAS  Google Scholar 

  • Fu YJ, Zu YG, Wang LL et al (2008) Determination of fatty acid methyl esters in biodiesel produced from yellow horn oil by LC. Chromatographia 67:9–14

    Article  CAS  Google Scholar 

  • Gabitova AR, Mazanov SV, Usmanov RA (2017) Viscometry as a method for determining concentration of fatty acid ethyl esters in biodiesel fuel. Chem Tech Fuels Oil 53:77–86

    Article  CAS  Google Scholar 

  • Gonçalves JD, Aznar M, Santos GR (2014) Liquid–liquid equilibrium data for systems containing Brazil nut biodiesel + methanol + glycerin at 303.15 K and 323.15 K. Fuel 133:292–298

    Article  CAS  Google Scholar 

  • Goswami L, Namboodiri MT, Kumar RV, Pakshirajan K, Pugazhenthi G (2017a) Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification waste water. Renew Energy 105:400–406

    Article  CAS  Google Scholar 

  • Goswami L, Kumar RV, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017b) Simultaneous polycyclic aromatic hydrocarbon degradation and lipid accumulation by Rhodococcus opacus for potential biodiesel production. J Water Process Eng 17:1–10

    Article  Google Scholar 

  • Goswami L, Kumar RV, Arul Manikandan N, Pakshirajan K, Pugazhenthi G (2017c) Anthracene biodegradation by oleaginous Rhodococcus opacus for biodiesel production and its characterization. Polycycl Aromat Compd 1–13

    Google Scholar 

  • Goswami L, Manikandan NA, Dolman B, Pakshirajan K, Pugazhenthi G (2018) Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. J Clean Prod 196:1282–1291

    Article  CAS  Google Scholar 

  • Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019) A novel integrated biodegradation—microfiltration system for sustainable waste water treatment and energy recovery. J Hazard Mater 365:707–715

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Guil-Laynez JL, Guil-Laynez A (2017) Bioprospecting for seed oils from wild plants in the Mediterranean Basin for biodiesel production. J Clean Prod 159:180–193

    Article  CAS  Google Scholar 

  • Guimarães E, Mitsutake H, Gontijo LC et al (2015) Infrared spectroscopy and multivariate calibration for quantification of soybean oil as adulterant in biodiesel fuels. J Am Oil Chem Soc 92:777–782

    Article  CAS  Google Scholar 

  • Haas MJ, Bloomer S, Scott K (2000) Simple high-efficiency synthesis of fatty acid methyl esters from soapstock. J Am Oil Chem Soc 77:373–379

    Article  CAS  Google Scholar 

  • Hocevar L, Soares VRB, Oliveira FS et al (2012) Application of multivariate analysis in mid-infrared spectroscopy as a tool for the evaluation of waste frying oil blends. J Am Oil Chem Soc 89:781–786

    Article  CAS  Google Scholar 

  • Howell S (1997) Biodiesel fuel standard making progress. ASTM Stand News 25(4):16–19

    Google Scholar 

  • Ibeto CN, Okoye COB, Anyanwu CN (2009) Fossil fuels and heavy metal pollution of the Nigerian environment. J Sci Ind Policy 2:9–20

    Google Scholar 

  • Kanateva AY, Kurganov AA, Yakubenko EE (2014) Application of two-dimensional gas chromatography–mass spectrometry to determination of biodiesel impurities in hydrocarbon fuels. Pet Chem 54:459–465

    Article  CAS  Google Scholar 

  • Knothe G (1999) Rapid monitoring of transesterification and assessing biodiesel fuel quality by near-infrared spectroscopy using a fiber-optic probe. J Am Oil Chem Soc 76:795–800

    Article  CAS  Google Scholar 

  • Knothe G (2001a) Analytical methods used in the production and fuel quality assessment of biodiesel. Trans ASAE 44(2):193

    Article  CAS  Google Scholar 

  • Knothe G (2001b) Determining the blend level of mixtures of biodiesel with conventional diesel fuel by fiber-optic near-infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 78:1025–1028

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Tech 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83(10): 823–833

    Google Scholar 

  • Knothe G, Steidley KRA (2009) Comparison of used cooking oils: a very heterogeneous feedstock for biodiesel. Bioresour Technol 100:5796–5801

    Article  CAS  Google Scholar 

  • Komers K, Skopal F, Stloukal R (1997) Determination of the neutralization number for biodiesel fuel production. Fett/Lipid 99(2):52–54

    Article  CAS  Google Scholar 

  • Kuepethkaew S, Sangkharak K, Benjakul S et al (2017) Optimized synthesis of biodiesel using lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Renew Energy 104:139–147

    Article  CAS  Google Scholar 

  • Kumar K, Mishra A (2012) Quantification of ethanol in ethanol-petrol and biodiesel in biodiesel-diesel blends using fluorescence spectroscopy and multivariate methods. J Fluoresc 22:339–347

    Article  CAS  Google Scholar 

  • Kumar M, Ghosh P, Khosla K et al (2013) Biodiesel production from municipal secondary sludge. Bioresour Technol 216:165–171

    Article  CAS  Google Scholar 

  • Laura B, Fulvia R (2015) Extraction and characterization of brassinosteroids from residues of the biodiesel chain. Ind Crops Prod 75:24–28

    Article  CAS  Google Scholar 

  • Lima SM, Izida T, Figueiredo MS (2008) Analysis of biodiesel and frying vegetable oils by means of FTIR photoacoustic spectroscopy. Eur Phys J Spec Top 153:535–537

    Article  Google Scholar 

  • Linck YG, Killner MHM, Danieli E (2013) Mobile low-field 1H NMR spectroscopy desktop analysis of biodiesel production. Appl Magn Reson 44:41–53

    Article  CAS  Google Scholar 

  • Lozano P, Chirat N, Graille J (1996) Measurement of free glycerol in biofuels. Fresenius J Anal Chem 354(3):319–322

    CAS  Google Scholar 

  • Lv L, Dai L, Du W et al (2017) Effect of water on lipase NS81006-catalyzed alcoholysis for biodiesel production. Process Biochem 58:239–244

    Article  CAS  Google Scholar 

  • Maciel PB, Barros LLS, Duarte ECM (2013) Determination of nutrients and potentially toxic elements in Jatropha curcas seeds, oil and biodiesel using inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 297:209–213

    Article  CAS  Google Scholar 

  • Maulidiyah Nurdin M, Fatma F et al (2017) Characterization of methyl ester compound of biodiesel from industrial liquid waste of crude palm oil processing. Anal Chem Res 12:1–9

    Article  CAS  Google Scholar 

  • Michelin S, Penha FM, Sychoski MM et al (2015) Kinetics of ultrasound-assisted enzymatic biodiesel production from Macauba coconut oil. Renew Energy 76:388–393

    Article  CAS  Google Scholar 

  • Mirghani MES, Kabbashi NA, Alam MZ et al (2011) Rapid method for the determination of moisture content in biodiesel using FTIR spectroscopy. J Am Oil Chem Soc 88:1897–1904

    Article  CAS  Google Scholar 

  • Mohanan A, Bouzidi L, Li S et al (2016) Mitigating crystallization of saturated fames in biodiesel: 1. Lowering crystallization temperatures via addition of metathesized soybean oil. Energy 96:335–345

    Article  CAS  Google Scholar 

  • Monteiro MR, Ambrozin ARP, Lião LM et al (2009) 1H NMR and multivariate calibration for the prediction of biodiesel concentration in diesel blends. J Am Oil Chem Soc 86:581–585

    Article  CAS  Google Scholar 

  • Montpetit A, Tremblay AY (2016) Erratum to: a quantitative method of analysis for sterol glycosides in biodiesel and FAME using GC–FID. J Am Oil Chem Soc 93:479–487

    Article  CAS  Google Scholar 

  • Morales V, Goren AC, Held A et al (2015) Validation of a GC–IDMS method for the metrologically traceable quantification of selected FAMEs in biodiesel. Accred Qual Assur 20:411–419

    Article  CAS  Google Scholar 

  • Patel A, Mikes F, Matsakas L (2018) An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules 23(7):1562

    Article  CAS  Google Scholar 

  • Pauls RE (2012) Ultrahigh pressure liquid chromatographic determination of tocopherols in B100 biodiesel. J Am Oil Chem Soc 89:1577–1584

    Article  CAS  Google Scholar 

  • Payri R, Salvador FJ, Gimeno J (2016) A technique to match the refractive index of different diesel fuels with the refractive index of transparent materials to improve the experimental visualization. Exp Tech 40:261–269

    Article  Google Scholar 

  • Pinto AC, Guarieiro LLN, Rezende MJC et al (2005) Biodiesel: an overview. J Braz Chem Soc 16:1313–1330

    Article  CAS  Google Scholar 

  • Pinzi S, Leiva D, Arzamendi G et al (2011) Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties. Bioresour Technol 102:7280–7288

    Article  CAS  Google Scholar 

  • Pinzi S, Alonso F, Olmo JC et al (2012) Near infrared reflectance spectroscopy and multivariate analysis to monitor reaction products during biodiesel production. Fuel 92:354–359

    Article  CAS  Google Scholar 

  • Reddy SR, Titu D, Chadha A (2010) A novel method for monitoring the transesterification reaction of oil in biodiesel production by estimation of glycerol. J Am Oil Chem Soc 87:747–754

    Article  CAS  Google Scholar 

  • Reyman D, Bermejo AS, Uceda IR et al (2014) A new FTIR method to monitor transesterification in biodiesel production by ultrasonication. Environ Chem Lett 12:235–240

    Article  CAS  Google Scholar 

  • Rodrigues MG, SouzaI AG, Santos MG et al (2009) Antioxidative properties of hydrogenated cardanol for cotton biodiesel by PDSC and UV/VIS. J Therm Anal Calorim 97:605–609

    Article  CAS  Google Scholar 

  • Rudnitskaya A, Legin A (2008) Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes. J Ind Microbiol Biotechnol 35:443–451

    Article  CAS  Google Scholar 

  • Ruschel CFC, Huang CT, Samios D et al (2015) Environmentally friendly determination of quality parameters of biodiesel/diesel blends using Fourier Transform infrared spectra. J Am Oil Chem Soc 92:309–315

    Article  CAS  Google Scholar 

  • Saeong P, Saisriyoot M, Thanapimmetha A et al (2017) The response surface optimization of steryl glucosides removal in palm biodiesel using silica adsorption. Fuel 191:1–9

    Article  CAS  Google Scholar 

  • Sáez-Bastante J, Pinzi S, Reyero I et al (2014) Biodiesel synthesis from saturated and unsaturated oils assisted by the combination of ultrasound, agitation and heating. Fuel 131:6–16

    Article  CAS  Google Scholar 

  • Scherer MD, Oliveira SL, Lima SM et al (2011) Determination of the biodiesel content in diesel/biodiesel blends: a method based on fluorescence spectroscopy. J Fluoresc 21:1027–1031

    Article  CAS  Google Scholar 

  • Selvaraj R, Moorthy IG, Kumar RV, Sivasubramanian V (2019) Microwave mediated production of FAME from waste cooking oil: modelling and optimization of process parameters by RSM and ANN approach. Fuel 237:40–49

    Article  CAS  Google Scholar 

  • Singer A, Schröder O, Pabst C et al (2015) Aging studies of biodiesel and HVO and their testing as neat fuel and blends for exhaust emissions in heavy-duty engines and passenger cars. Fuel 153:595–603

    Article  CAS  Google Scholar 

  • Tesfaye M, Katiyar V (2016) Microwave assisted synthesis of biodiesel from soybean oil: effect of poly (lactic acid)-oligomer on cold flow properties, IC engine performance and emission characteristics. Fuel 170:107–114

    Article  CAS  Google Scholar 

  • Torrisi NM, Sabino M (2012) Biodiesel production control using PNN and coriolis flowmeter. Neural Comput Applic 23:1275–1282

    Article  Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  • Vicente G, Bautista LF, Rodríguez et al (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  • Viêgas CV, Hachemi I, Freitas SP et al (2015) A route to produce renewable diesel from algae: synthesis and characterization of biodiesel via in situ transesterification of Chlorella algae and its catalytic deoxygenation to renewable diesel. Fuel 155:144–154

    Article  CAS  Google Scholar 

  • Vural US, Durmaz F, Kocyigit O (2008) Excess molar volumes, viscosity, refractive index, and gibbs energy of activation of binary biodiesel + benzene, and biodiesel + toluene mixtures at 298.15 K and 303.15 K. Russ J Phys Chem A 82:2260–2268

    Article  CAS  Google Scholar 

  • Woods GD, Fryer F (2007) Direct elemental analysis of biodiesel by inductively coupled plasma–mass spectrometry. Anal Bioanal Chem 389:753–761

    Article  CAS  Google Scholar 

  • Xie W, Li H (2006) Hydroxyl content and refractive index determinations on transesterified soybean oil. J Am Oil Chem Soc 83:869–872

    Article  CAS  Google Scholar 

  • Yang BJ, Zheng L, Han XT et al (2013) Development of TLC–FID technique for rapid screening of the chemical composition of microalgae diesel and biodiesel blends. Fuel 111:344–349

    Article  CAS  Google Scholar 

  • Zhong F, Xu M, Schelli K et al (2017) Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC–MS/MS metabolic profilin. Ecotoxicol Environ Saf 142:164–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vinoth Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinoth Kumar, R. et al. (2020). Analytical Methods in Biodiesel Production. In: Praveen Kumar, R., Bharathiraja, B., Kataki, R., Moholkar, V. (eds) Biomass Valorization to Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0410-5_13

Download citation

Publish with us

Policies and ethics