Skip to main content

Transdermal Delivery of Chitosan-Based Systems

  • Chapter
  • First Online:
Functional Chitosan

Abstract

Transdermal drug delivery has offered a promising alternative to other routes of delivery especially for the lipophilic drugs with limited oral bioavailability. Transdermal systems are acceptable because of their noninvasiveness, ease of application and removal, controlled drug release for long duration of time, avoidance of hepatic first-pass metabolism, and improved bioavailability. The predominant challenge in transdermal drug delivery is the skin barrier in the form of stratum corneum. Various approaches have been employed for breaching this barrier including penetration enhancers, iontophoresis, electroporation, and sonophoresis to name a few. Chitosan is a biodegradable, biocompatible polysaccharide polymer with anti-infective, antidiabetic, anticancer, and antihyperlipidemic effect. It has also been used as an adjuvant in transdermal drug delivery for its skin penetration enhancing properties. It is polycationic in nature and shows strong mucoadhesive property by interacting with negatively charged entity of skin moieties, thus prolonging contact time. This chapter deals with the synthesis of chitosan and application of chitosan-based drug delivery systems in transdermal drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Abioye AO, Issah S, Kola-Mustapha AT (2015) Ex vivo skin permeation and retention studies on chitosan- ibuprofen- 2 gellan ternary nanogel prepared by in situ ionic gelation technique- a 3 tool for controlled transdermal delivery of ibuprofen. Int J Pharm

    Google Scholar 

  • Abnoos M, Mohseni M, Mousavi SAJ, Ashtari K, Ilka R, Mehravi B (2018) Chitosan-alginate nano-carrier for transdermal delivery of pirfenidone in idiopathic pulmonary fibrosis. Bio Macromol

    Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Dwivedi S, Ajazuddin GTK, Saraf S, Saraf S, Tripathi DK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164:26–40

    Article  CAS  PubMed  Google Scholar 

  • Ali HSM, Hanafy AF (2016) Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci xxx:1–9

    Google Scholar 

  • Al-Kassas R, Wen J, Cheng AE, Kim AM, Liu SSM, Yu J (2016) Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carboppol Polym 06:096

    Google Scholar 

  • Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99:53–62

    Article  CAS  PubMed  Google Scholar 

  • Anirudhan TS, Nair SS, Nair AS (2016) Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr Polym 152:687–698

    Article  CAS  PubMed  Google Scholar 

  • Arai K, Kinumaki T, Fujita T (1968) Toxicity of chitosan. Bull Tokai Reg Fish Lab 56:89–94

    Google Scholar 

  • Barradas TN, Senna JP, Cardoso SA, Silva KGH, Mansur CRE (2018) Formulation characterization and in-vitro drug release of hydrogel thickened nanoemulsion for topical delivery of 8- methoxypsoralen. Mater Sci Eng C 92:245–253

    Article  CAS  Google Scholar 

  • Bhise K, Dhumal R, Paradkar A, Kadam S, Effect of drying methods on swelling, erosion and drug release from chitosan–naproxen sodium complexes, AAPS Pharm SciTech.20089;1–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolzinger MA, Briançon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin; a complex rate-controlling membrane. Colloid Interface Sci 17:156–165

    CAS  Google Scholar 

  • Brown MB, Martin GP, Jones SA, Akomeah FK (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 13:175–187

    Article  CAS  PubMed  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles:systematic study of particle size and drug content. Int J Pharm 336:367–375

    Article  CAS  PubMed  Google Scholar 

  • Busio J, Molina-Perea C, Gonzalez-Aramundiz JV (2018) Lower-sized chitosan nanocapsules for transcutaneous antigen delivery. Nanomaterials 8(9):659

    Article  CAS  Google Scholar 

  • Ceschel G, Bergamante V, Maffei P, Borgia Lambardi S, Calabrese V, Biserni S (2003) Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv 12:275–280

    Article  CAS  Google Scholar 

  • Cevc G, Vierl U (2010) Nanotechnology and the transdermal route; A state of the art review and critical appraisal. J Control Release 141:277–299

    Article  CAS  PubMed  Google Scholar 

  • Chassarya P, Vincenta T, Marcanob JS, Macaskiec LE, Guibala E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147

    Article  CAS  Google Scholar 

  • Clarys P, Alewaeters K, Jadoul A (1998) In vitro percutaneous penetration through hairless rat skin: influence of temperature, vehicle and penetration enhancers. Eur J Pharm Biopharm 46:279–283

    Article  CAS  PubMed  Google Scholar 

  • Cormier M, Trautman J, Kim HL (2001) Skin treatment apparatus for sustained transdermal drug delivery. Patent (Serial number WO 01/41864 A1)

    Google Scholar 

  • Crocker P, Maynard K, Little M (2001) Pain free blunt needle injection technology. Innov Pharm Technol 9:111–115

    Google Scholar 

  • Delgado-Charro MB, Guy RH (2014) Effective use of transdermal drug delivery in children. Adv Drug Deliv Rev 73:63–82

    Article  CAS  PubMed  Google Scholar 

  • Denet AR, Vanbever R, Preat V (2004) Skin electroporation for topical and transdermal delivery. Adv Drug Deliv Rev 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Doukas AG, Kollias N (2004) Transdermal delivery with a pressure wave. Adv Drug Deliv Rev 56:559–579

    Article  CAS  PubMed  Google Scholar 

  • Elgadir MA, Uddin MS, Ferdosh S, Adam A, Ahmed Jalal Khan Chowdhury, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23:619–629

    Article  CAS  PubMed  Google Scholar 

  • Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater Sci Eng C 77:1349–1362

    Article  CAS  Google Scholar 

  • Furlani F, Sacco P, Marsich E, Donati I, Paoletti S (2017) Highly monodisperse colloidal coacervates based on a bioactive lactose-modified chitosan: from synthesis to characterization. Carbohydr Polym 174:360–368

    Article  CAS  PubMed  Google Scholar 

  • Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20:63–102

    Article  CAS  PubMed  Google Scholar 

  • Godin B, Touitou E (2007) Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev 59:1152–1161

    Article  CAS  PubMed  Google Scholar 

  • Godshall N, Anderson R (1999) Method and apparatus for disruption of the epidermis. Patent (Serial number U.S. 5,879, 326)

    Google Scholar 

  • Grabovac V, Guggi D, Bernkop-Schnürch A (2005) Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev 57:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Grenha A, Remunan-Lopez C, Carvalh EL, Seijo B (2008) Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm 69:83–93

    Article  CAS  PubMed  Google Scholar 

  • Grice JE, Ciotti S, Weiner N, Lockwood P, Cross SE, Roberts MS (2010) Relative uptake of minoxidil into appendages and stratum corneum and permeation through human skin in vitro. J Pharm Sci 99:712–718

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Vyas SP (2010) Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm 78:959–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy RH, Kalia YN, Delgado-Charro MB (2000) Iontophoresis: electrorepulsion and electroosmosis. J Control Release 64:129–132

    Article  CAS  PubMed  Google Scholar 

  • Hafez SMA, Hathout RM, Sammour OA (2018) Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanningmicroscopy. Int J Biol Macromol 108:753–764

    Article  PubMed  CAS  Google Scholar 

  • Hafner A, Lovric J, Pepic I, Filipovic-Grcic J (2011) Lecithin/chitosan nanoparticles for transdermal delivery of Melatonin. J Microencapsul 28(8):807–815

    Article  CAS  PubMed  Google Scholar 

  • He W, Guo X, Xiao L, Feng M (2009) Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm 382(1–2):234–243

    Article  CAS  PubMed  Google Scholar 

  • Helmstadter A (2001) The history of electrically assisted transdermal drug delivery (iontophoresis). Pharmazie 56:583–587

    CAS  PubMed  Google Scholar 

  • Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ (2001) The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22:2959–2966

    Article  CAS  PubMed  Google Scholar 

  • Jacques SL, McAuliffe DJ, Blank IH, Parrish JA (1988) Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport. Patent (Serial number U.S. 4, 775, 361)

    Google Scholar 

  • Jana S, Manna S, Nayak AK, Sen KK, Basu SK (2014) Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces 114:36–44

    Article  CAS  PubMed  Google Scholar 

  • Jang K (1998) Skin perforating apparatus for transdermal medication. Patent (Serial number U.S. 5,843,114)

    Google Scholar 

  • Jintapattanakit A, Junyaprasert VB, Kissel T (2009) The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci 98:4818–4830

    Article  CAS  PubMed  Google Scholar 

  • Kalia YN, Naik A, Garrison J, Guy RH (2004) Iontophoretic drug delivery. Adv Drug Deliv Rev 56:619–658

    Article  CAS  PubMed  Google Scholar 

  • Kassas RA, Wen J, Cheng AEM, Kim AMJ, Liu SSM, Yu J (2016) Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym 153:176–186

    Article  CAS  Google Scholar 

  • Kast CE, Bernkop-Schnürch A (2002) Influence of the molecular mass on the permeation enhancing effect of different poly(acrylates). STP Pharm Sci 6:351–356

    Google Scholar 

  • Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, Prausnitz MR (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504

    Article  CAS  PubMed  Google Scholar 

  • Khalil SKH, El-Feky GS, El-Banna ST, Khalil WA (2012) Preparation and evaluation of warfarin-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym 90:1244–1253

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim SI, Kwon IB, Kim MH, Lim JI (2013) Simple fabrication of silver hybridized porous chitosan-based patch for transdermal drug-delivery system. Mater Lett 95:48–51

    Article  CAS  Google Scholar 

  • Kotze AF, Lueben HL, Leeuw BJ, Boer BG, Verhoef JC, Junginger HE (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 51:35–46

    Article  PubMed  Google Scholar 

  • Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971

    Article  CAS  Google Scholar 

  • Lai-Cheong JE, McGrath JA (2009) Structure and function of skin, hair and nails. Medicine 37:223–226

    Article  Google Scholar 

  • Lee D, Mohapatra SS (2008) Chitosan nanoparticle-mediated gene transfer. Gene Therapy Protocols Humana Press 127–140

    Google Scholar 

  • Liu S, Yang S, Ho PC (2017) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci

    Google Scholar 

  • Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins; Drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Longbridge DJ, Sweeney PA, Burkoth TL, Bellhouse BJ (1998) Effects of particle size and cylinder pressure on dermal powder ject-R delivery of testosterone to conscious rabbits. Proc Int Symp Control Rel Bioact Mat 25:964

    Google Scholar 

  • Magnusson BM, Walters KA, Roberts MS (2001) Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev 50:205–227

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Lane C, Tomaro-Duchesneau C, Saha S, Prakash S (2011) A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomedicine 6:485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manca ML, Loy G, Zaru M, Fadda AM, Antimisiaris SG (2008) Release of rifampicin from chitosan, PLGA and chitosan-coated PLGA microparticles. Colloids Surf B Biointerfaces 67:166–170

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  CAS  PubMed  Google Scholar 

  • Marks R (2004) The stratum corneum barrier: the final frontier. J Nutr 134:2017S–2021S

    Article  CAS  PubMed  Google Scholar 

  • Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnürch A (2007) Chitosan– thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res 82:1–9

    Article  CAS  Google Scholar 

  • Matos BN, Reis TA, Gratieri T, Gelfuso GM (2015) Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int J Biol Macromols 75:225–229

    Article  CAS  Google Scholar 

  • Matriano JA, Cormier M, Johnson J (2002) Macroflux technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Alarcon J, Britingham JM (2002) Improved genetic immunization via micromechanical disruption of skin barrier function and targeted epidermal delivery. Nat Med 8:415–419

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1996) Transdermal delivery using low frequency sonophoresis. Pharm Res 13:411–420

    Article  CAS  PubMed  Google Scholar 

  • Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics

    Google Scholar 

  • Monteiro-Riviere NA (2010) Toxicology of the skin. Informa Healthcare USA, Inc., New York, pp 1–18

    Book  Google Scholar 

  • Muddle AG, Longridge DJ, Sweeney PA (1997) Transdermal delivery of testosterone to conscious rabbits using powderject (R): a supersonic powder delivery system. Proc Int Symp Control Rel Bioact Mat 24:713

    Google Scholar 

  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy SN, Hiremath RR (2001) Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate. AAPS PharmSciTech 2:1–5

    Article  PubMed Central  Google Scholar 

  • Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368

    Article  CAS  PubMed  Google Scholar 

  • Nawaz A, Wong TW (2009) Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydr Polym

    Google Scholar 

  • Park SY, Jun ST, Marsh KS (2001) Physical properties of PVOH/chitosan-blended films cast from different solvents. Food Hydrocoll 15:499–502

    Article  CAS  Google Scholar 

  • Pathan IB, Setty CM (2009) Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res 8(2):173–179

    Article  CAS  Google Scholar 

  • Paulino AT, Simionato JI, Garcia JC, Jorge N (2006) Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym 64:98–103

    Article  CAS  Google Scholar 

  • Pawadee M, Malinee P, Thanawit P, Junya P (2003) Hetrogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr Polyms 52:119–123

    Article  Google Scholar 

  • Pawar D, Mangal S, Goswami R, Jaganathan KS (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85:550–559

    Article  CAS  PubMed  Google Scholar 

  • Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587

    Article  CAS  PubMed  Google Scholar 

  • Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, Wurm EMT, Yoong C, Robertson TA, Soyer HP, Roberts MS (2011) Nanoparticles and microparticles for skin drug delivery. Adv D Deli Rev 63:470–491

    Article  CAS  Google Scholar 

  • Risbud MV, Hardikar AA, Bhat SV, Bhonde R (2000) pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Cross SE, Pellett MA (2002) Skin transport. In: Walters KA (ed) Dermatological and transdermal formulations. Marcel Dekker, New York, pp 89–195

    Google Scholar 

  • Sadeghi AMM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger HE (2008) Permeation enhancer effect of chitosan and chitosan derivatives: Comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm 70:270–278

    Article  CAS  PubMed  Google Scholar 

  • Sakloetsakun D, Hombach J, Bernkop-Schnürch A (2009) In situ gelling properties of chitosan–thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 30:6151–6157

    Article  CAS  PubMed  Google Scholar 

  • Scheuplein RJ (1965) Mechanism of percutaneous adsorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol 45:334–334

    Article  CAS  PubMed  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  PubMed  Google Scholar 

  • Siafaka PI, Titopoulou A, Koukaras EN, Kostoglou M, Koutris E, Karavas E, Bikiaris DN (2015) Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int J Pharm 495:249–264

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362

    Article  CAS  PubMed  Google Scholar 

  • Sinha VR, Kaur MP (2000) Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 26:1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Sintov A, Krymbeck I, Daniel D (2003) Radiofrequency microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89:311–320

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Wood E, Dornish M (2004) Effect of chitosan on epithelial cell tight junctions. Pharm Res 21(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Svedman P, Lundin S, Hoglund P (1996) Passive drug diffusion via standardized skin mini-erosion; methodological aspects and clinical findings with new device. Pharm Res 13:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Tanner T, Marks R (2008) Delivering drugs by the transdermal route: review and comment. Skin Res Technol 14:249–260

    Article  CAS  PubMed  Google Scholar 

  • Tapia C, Corbalán V, Costa E, Gai MN, Yazdani-Pedram M (2005) Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan-alginate and chitosan-carrageenan mixtures. Biomacromols 6:2389–2395

    Article  CAS  Google Scholar 

  • Taveira SF, Nomizo A, Lopez RF (2009) Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release 134:35–40

    Article  CAS  PubMed  Google Scholar 

  • Thanou MM, Kotze AF, Scharringhausen T, Lueben HL, De Boer AG, Verhoef JC, Junginger HE (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64:15–25

    Article  CAS  PubMed  Google Scholar 

  • Trautman J, Cormier MJ, Kim HL, Zuck MG (2000) Device for enhancing transdermal agent flux. Patent (Serial number U.S. 6,083,196)

    Google Scholar 

  • Tu Y, Wang X, Lu Y, Zhang H, Yu Y, Chen Y, Liu J, Sun Z, Cui L, Gao J, Zhong Y (2016) Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret. Int J Nanomedicine 11:5549–5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendtner MHS, Korting HC (2006) The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19:296–302

    Article  Google Scholar 

  • Werle M, Bernkop-Schnürch A (2008) Thiolated chitosans: useful excipients for oral drug delivery. J Pharm Pharmacol 60:273–281

    Article  CAS  PubMed  Google Scholar 

  • William AC, Barry BW (2004) Penetration enhancer. Adv Drug Deliv 56:603–618

    Article  CAS  Google Scholar 

  • Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, Wang W (2013) Chitosan-graft-cyclodextrin nanoparticles asa carrier for controlled drug release. Int J Pharm

    Google Scholar 

  • Zhang L, Nolan E, Kreitschitz S, Rabussay DP (2002) Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim Biophys Acta 1572:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zu Y, Zhang Y, Zhao X, Shan C, Zu S, Wang K, Li Y, Ge Y (2012) Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Aqil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Praveen, A., Aqil, M. (2019). Transdermal Delivery of Chitosan-Based Systems. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_3

Download citation

Publish with us

Policies and ethics