Skip to main content

The Response of Major Food Crops to Drought Stress: Physiological and Biochemical Responses

  • Chapter
  • First Online:

Abstract

Prevailing conditions of the climate have had a drastic effect on global food security. Various types of stresses have been producing havoc by reducing crop production. One of the primary causes has been observed in the form of drought. Drought generally has various kinds of impacts on human life, but its main victim is food crops. A plant has specific defense systems to combat and stay unchanged in an environment with water stress, but this ability decreases as the lack of water increases for a long time. The average globular yields of these primary agricultural products are admirably purposeful by enactment of crop performance in millions of fields distributed transversely in series of management practices for soil and climatic regimes; even with the global food supply complications, here we illustrate some simple measures of most widely germinated crops based upon the location, temperature, and precipitation. The types of responses, like reactive oxygen species (ROS), root signaling. Antioxidant enzymes, photosynthesis, etc., discussed in the context will help us to understand the situation with more clarity. The possible mitigation measures are also discussed in detail. A plant may be mitigated at different levels including breeding progress in drought condition, cellular and molecular adaptations, or using supplemental irrigation practices. In this paper, authors have reviewed all the aspects that encapsulate drought stress and its response to major food crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed AH (2017) Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Science 16(1):9–23

    CAS  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31(3):325–340

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011a) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197(3):177–185

    Article  CAS  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011b) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1):373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asif M, Kamran A (2011) Plant breeding for water-limited environments. Crop Sci 51:2911

    Article  Google Scholar 

  • Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE (2016) Progressive forest canopy water loss during the 2012–2015 California drought. Proc Natl Acad Sci 113(2):E249–E255

    Article  CAS  PubMed  Google Scholar 

  • Bahrun A, Jensen CR, Asch F, Mogensen VO (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J Exp Bot 53(367):251–263

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MRG, Meyerhoff O et al (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554(1–2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res 97:248–253

    Article  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol Biochem 48:359–373

    Article  CAS  PubMed  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. In: Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, Dordrecht, pp 57–70

    Chapter  Google Scholar 

  • Blum A (2018) Plant breeding for stress environments

    Google Scholar 

  • Blum A, Sinmena B, Ziv O (1980) An evaluation of seed and seedling drought tolerance screening tests in wheat. Euphytica 29:727–736

    Article  Google Scholar 

  • Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P et al (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer J (1980) Afternoon water deficits and grain yields in old and new soybean cultivars. Agron J 72:981–986

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Response to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Castleberry RM, Crum CW, Krull CF (1984) Genetic yield improvement of US maize cultivars under varying fertility and climatic environments. Crop Sci 24:33–36

    Article  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  • Chaves M, Oliveira M (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89(7):887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiani E, Astolfi P, Carloni P, Stipa P, Greci L (2008) Antioxidants: how they work. In: Oxidants in biology. Springer, Dordrecht, pp 251–266

    Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul 24(4):285

    Article  CAS  Google Scholar 

  • De Leonardis AM, Petrarulo M, De Vita P, Mastrangelo AM (2012) Genetic and molecular aspects of plant response to drought in annual crop species. In: Advances in selected plant physiology aspects. InTech, Rijeka

    Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (1997) What is yield. Developing drought and low N-tolerant maize. CIMMYT, El Batan, pp 332–335

    Google Scholar 

  • Ennahli S, Earl HJ (2005) Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci 45:2374–2382

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009b) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KHM (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203(2):81–102

    Article  Google Scholar 

  • Feng C, Stewart J (2003) A cDNA-AFLP profile of cotton genes in response to drought stress. AAES Research Services, pp 176–182

    Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004a) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:1–11

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004b) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93

    Article  PubMed  CAS  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2008) Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice 1(1):36–51

    Article  Google Scholar 

  • Ge L-F, Chao D-Y, Shi M, Zhu M-Z, Gao J-P, Lin H-X (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  CAS  PubMed  Google Scholar 

  • Gondim SMG, Bastos AVB, Peixoto LSA (2010) Áreas de atuação, atividades e abordagens teóricas do psicólogo brasileiro. O trabalho do psicólogo no Brasil:174–199

    Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84

    Article  PubMed  Google Scholar 

  • Hammer GL (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L, Tuong TP, Lopes K, Hardy B (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK (2009) An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4-and RNA-binding protein. Cell 137(3):498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Chen Z, Wang J, Li W, Zhao J, Wu J, Wang Z, Chen X (2015) A sucrose: fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. Gene 570:239–247

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300

    Article  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change. Working Group II (2014) Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Iqbal MK (2013) Inducing drought tolerance in upland cotton (Gossypium hirsutum L.), accomplishments and future prospects. World Appl Sci J 21(7):1062–1069

    CAS  Google Scholar 

  • Jefferies RA (1995) Physiology of crop response to drought. In: Potato ecology and modelling of crops under conditions limiting growth. Springer, Dordrecht, pp 61–74

    Chapter  Google Scholar 

  • Johnson DA, Asay KH (1993) Viewpoint–selection for improved drought response in cool-season grasses. J Range Manag 46:194–202

    Article  Google Scholar 

  • Johnson CC, Barron EJ, Kauffman EG, Arthur MA, Fawcett PJ, Yasuda MK (1996) Middle cretaceous reef collapse linked to ocean heat transport. Geology 24(4):376

    Article  CAS  Google Scholar 

  • Kamara AY, Kling JG, Menkir A, Ibikunle O (2003) Agronomic performance of maize (Zea mays L.) breeding lines derived from a low nitrogen maize population. J Agric Sci 141(2):221–230

    Article  Google Scholar 

  • Kao YT (2014) Vygotsky’s theory of instruction and assessment: the implications on foreign language education. Pennsylvania State University, University Park, Pennsylvania

    Google Scholar 

  • Khan MB, Hussain N, Iqbal M (2001) Effect of water stress on growth and yield components of maize variety YHS 202. J Res (Science) 12:15–18

    Google Scholar 

  • Lobell DB (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

    Article  Google Scholar 

  • Luquet D, Vidal A, Smith M, Dauzat J (2005) ‘More crop per drop’: how to make it acceptable for farmers? Agric Water Manag 76:108–119

    Article  Google Scholar 

  • MacKerron DKL, Jefferies RA (1985) Observations on the effects of the relief of late water stress in potato. Potato Res 28:349–359

    Article  Google Scholar 

  • Manavalan LP, Guttikonda SK, Phan Tran LS, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50(7):1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Manivannan P, Abdul Jaleel C, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GMA, Panneerselvam R (2007) Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B: Biointerfaces 59(2):141–149

    Article  CAS  PubMed  Google Scholar 

  • Marengo JA, Torres RR, Alves LM (2017) Drought in Northeast Brazil—past, present, and future. Theor Appl Climatol 129(3–4):1189–1200

    Article  Google Scholar 

  • Mauzerall D (1976) Chlorophyll and photosynthesis. Philos Trans R Soc Lond B 273(924):287–294

    Article  CAS  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89(7):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer R, Boyer J (1972) Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls. Planta 108:77–87

    Article  CAS  PubMed  Google Scholar 

  • Mian SA (1994) US university-sponsored technology incubators: an overview of management, policies and performance. Technovation 14(8):515–528

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58(1):459–481

    Article  PubMed  CAS  Google Scholar 

  • Moran MS, Clarke TR, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49(3):246–263

    Article  Google Scholar 

  • Mor A, Koh E, Weiner L, Rosenwasser S, Sibony-Benyamini H, Fluhr R (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol 165:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch SAL (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203–216

    Article  PubMed  Google Scholar 

  • Nam NH, Subbaroa GV, Chauhan YS, Johansen C (1998) Importance of canopy attributes in determining dry matter accumulation of pigeon pea under contrasting moisture regimes. Crop Sci 38:955–961

    Article  Google Scholar 

  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG (2010) Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ J Plant Physiol 57(1):87–95

    Article  CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T et al (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23(6):2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111:373–382

    Article  Google Scholar 

  • Oosterhuis DM (1987) Osmotic adjustment in cotton (Gossypium hirsutum L.) leaves and roots in response to water stress. Plant Physiol 84:1154–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostad-Ali-Askari K, Shayannejad M, Eslamian S (2017) Deficit irrigation: optimization models. Management of Drought and Water Scarcity. Handbook of Drought and Water Scarcity

    Google Scholar 

  • Oweis T (1997) Supplemental irrigation: a highly efficient water-use practice

    Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Phys Regul Integr Comp Phys 301:R843–R863

    CAS  Google Scholar 

  • Peacock JM, Miller WB, Matsuda K, Robinson DL (1990) Role of heat girdling in early seedling death of sorghum. Crop Sci 30:138–143

    Article  Google Scholar 

  • Peleg ZBE (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Article  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163(5):987–992

    Article  CAS  Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 24:14–18

    Article  Google Scholar 

  • Salekdeh GH (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Salter PJ, Goode JE (1967) Crop responses to water at different stages of growth, Research Reviews 2. Commonwealth Bureau of Horticulture, East Mailing, p 97

    Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13(6):281–287

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50(Special_Issue):1023–1036

    Article  CAS  Google Scholar 

  • Shah M, Steinberg BM (2017) Drought of opportunities: contemporaneous and long-term impacts of rainfall shocks on human capital. J Polit Econ 125(2):527–561

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  CAS  PubMed  Google Scholar 

  • Shearman V, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in the olive tree. Plant Sci 166:293–302

    Article  CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166(4):941–948

    Article  CAS  Google Scholar 

  • Todorova DT (2016) Polyamines and brassinosteroids in drought stress responses and tolerance in plants. In: Water stress and crop plants: a sustainable approach. Wiley, Chichester, pp 608–627

    Chapter  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20(1):171–197

    Article  Google Scholar 

  • Tuteja N, Gill SS (eds) (2013) Climate change and plant abiotic stress tolerance. Wiley, Hoboken. ISBN 978-3-527-33491-9 (1,2)

    Google Scholar 

  • Ubaidillah M, Safitri FA, Hussain A, Mun B-G, Yun B-W, Kim K-M, Jo J-H, Lee S-K, Chung IK (2016) Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.). 3 Biotech 6:1–14

    Article  Google Scholar 

  • Valipour M (2016) Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol Appl 23(1):91–100

    Article  Google Scholar 

  • Van Loon AF, Gleeson T, Clark J, Van Dijk AI, Stahl K, Hannaford J et al (2016) Drought in the Anthropocene. Nat Geosci 9(2):89

    Article  Google Scholar 

  • Vurukonda SS (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang CYA (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integr Plant Biol 50(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Barak T, Vinocur B, Shoseyov O, Altman A (2003) Abiotic resistance and chaperones: possible physiological role of SP1, Astable and stabilizing protein from Populus. In: Vasil IK (ed) Plantbiotechnology 2000 and beyond. Kluwer, Dordrecht, pp 439–443

    Google Scholar 

  • Wilkinson L (2012) The grammar of graphics. In: Handbook of computational statistics. Springer, Berlin, pp 375–414

    Chapter  Google Scholar 

  • Wilkinson S, Davies W (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525

    Article  CAS  PubMed  Google Scholar 

  • Wolchover IN (2018) “What is a Drought?” live science. Accessed 27 Mar 2019

    Google Scholar 

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, Ito S, Yang C, Wang P, Xiao M-T, Liu L-x, Jiang W-q, Liu J, Zhang J-y, Wang B, Frye S, Zhang Y, Xu Y-h, Lei Q-y, Guan K-L, Zhao S-m, Xiong Y (2011) Oncometabolite 2-Hydroxyglutarate is a competitive inhibitor of α-Ketoglutarate-dependent Dioxygenases. Cancer Cell 19(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post flowering drought tolerance in pearl millet across environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2016) Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14(1):72–84

    Article  CAS  PubMed  Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transinactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10,759

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorov DB (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakht, S. et al. (2020). The Response of Major Food Crops to Drought Stress: Physiological and Biochemical Responses. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_6

Download citation

Publish with us

Policies and ethics