Skip to main content

Use of QTL in Developing Stress Tolerance in Agronomic Crops

  • Chapter
  • First Online:

Abstract

Stress is any external factor that interferes with the normal functioning and growth of crops. Abiotic stress has been extensively studied for causing devastating loss to agronomic crop yield across the globe. These problems were worse than they are today. Currently, we have contemporary genomic tools to find the root cause of problems and we have to broaden our horizon in understanding stress tolerance. Current advancement in genomics has paved our path for a more precise and comprehensive description of quantitative trait loci (QTLs) that regulate a specific trait. QTLs enable researchers to study genes that are responsible for even a single phenotypic trait. In other words, they help to study which sets of genes are responsible for making crops tolerant to stress. Numerous studies have been conducted to describe QTL mapping a significant tool for finding traits against stress tolerance. QTL mapping enables to evaluate the numbers, locations, and gene action pattern. Polygenes affect controlling a trait. Moreover, QTL has provided ease to dissect complex traits. Phenotypic analysis of QTL is done by observing numerous plants from the same segregating population for finding loci for a trait. The QTL tolerance trait so far has been accomplished in major agronomic crops, which include wheat, rice, maize, cotton, etc. In conclusion, we can say that QTL mapping is a crucial technique to elucidate specific components that allow direct assessment of stress tolerance. Therefore, in this chapter, we tried to explicate different QTL studies exploited for trait improvement of various agronomic crops for stress tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelraheem A, Hughs SE, Jones DC, Zhang J (2015) Genetic analysis and quantitative trait locus mapping of PEG – induced osmotic stress tolerance in cotton. Plant Breed 134:111–120

    Article  CAS  Google Scholar 

  • Agrios G (2005) Plant pathology. Elsevier Academic Press, Burlington, p 1009

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050. ESA working paper no. 12–03

    Google Scholar 

  • Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT (2000) Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101:756–766

    Article  CAS  Google Scholar 

  • Ali ML, Luetchens J, Nascimento J, Shaver TM, Kruger GR, Lorenz AJ (2015) Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant Soil 397:213–225

    Article  CAS  Google Scholar 

  • Amjid MW, Malik TA, Shakeel A, Wahid A (2015) QTL mapping for relative leaf water contents, cell membrane stability and excised leaf water loss under drought by using EST–SSR markers in Gossypium hirsutum. Int J Agric Biol 17(4). https://doi.org/10.17957/IJAB/14.0011

  • Araus JL, Sanchez C, Edmeades GO (2011) Phenotyping maize for adaptation to drought. In: Monneveux P, Ribaut JM (eds) Drought phenotyping in crops: from theory to practice CGIAR generation challenge program. CIMMYT, Mexico, pp 263–283

    Google Scholar 

  • Arshad M, Ali R, Idrees M, Afzal M (2005) Indigenous evaluation of long staple high yield upland cotton variety CIM 707. Pak Cottons 49:35–44

    Google Scholar 

  • Ashfaq S, Ahmad HM, Awan SI, Muhammad SAK (2014) Estimation of genetic variability, heritibility and correlation for some morphological traits in spring wheat. Seeds 10:9428

    Google Scholar 

  • Ashraf MFMR, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 6:535–546

    Article  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh SK, Palchamy A, Sadasivam S, Sarkarung S, Wade LJ (2003) Genetic analysis of drought resistance in rice by molecular markers. Crop Sci 43:1457–1469

    Article  CAS  Google Scholar 

  • Bagge M, Xia XC, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Bancal P, Triboi E (1993) Temperature effects on fructan oligomer contents and fructan related enzyme activities in stems of wheat (Triticum aestivum L.) during grain filling. New Phytol 123:247–253

    Article  CAS  Google Scholar 

  • Banziger M, Edmeades GO, Beck DL, Bellon MR (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Cimmyt, Mexico, p 68

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bate BC, Kundzewicz ZW, Wu S, Palutik JP (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change IPCC Secretariat, Geneva, p 210

    Google Scholar 

  • Baytar AA, Peynircioğlu C, Sezener V, Basal H, Frary A, Frary A, Doğanlar S (2018) Genome-wide association mapping of yield components and drought tolerance-related traits in cotton. Mol Breed 38:74. https://doi.org/10.1007/s11032-018-0831-0

    Article  CAS  Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Review:breeding upland rice for drought resistance. J Sci Food Agric 88:927–939

    Article  CAS  Google Scholar 

  • Bernier J, Serraj R, Kumar A, Venuprasad R, Impa S, Gowda V, Oane R, Spaner D, Atlin G (2009) The large-effect drought-resistance QTL qtl12.1 increases water uptake in upland rice. Field Crop Res 110:139–146

    Article  Google Scholar 

  • Bharti SH, Balyan S, Gupta P (2014) Quantitative trait loci analysis for some root traits in bread wheat (Triticum aestivum l.). Int J Agric Sci 4:214–221

    Google Scholar 

  • Blum A (2011) Plant breeding for water-limited environments. Springer, New York

    Book  Google Scholar 

  • Bo K, Ma Z, Chen J, Weng Y (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis qi et Yuan). Theor Appl Genet 128:25–39

    Article  CAS  PubMed  Google Scholar 

  • Borras L, Westgate ME, Otegui ME (2003) Control of kernel weight and kernel water relations by post-flowering source sink ratio in maize. Ann Bot 91:857–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borrell AK, Hammer GL (2000) Nitrogen dynamics and physiological basis of stay-green in sorghum. Crop Sci 40:1295–1307

    Article  Google Scholar 

  • Borrell AK, Hammer GL, Douglas ACL (2000) Does maintaining green leaf area in sorghum improve yield under drought? I. leaf growth and senescence. Crop Sci 40:1026–1037

    Article  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  CAS  PubMed  Google Scholar 

  • Camus-Kulandaivelu LJ, Veyrieras JB, Madur D, Combes V, Fourmann M (2006) Maize adaptation to temperate climate: relationship between population 7 structure and polymorphism in the dwarf 8 gene. Genetics 172:2449–2463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castonguay Y, Markhart AH (1992) Leaf gas exchange in water stressed common bean and tepary bean. Crop Sci 32:980–986

    Article  Google Scholar 

  • Chardon F, Virlon B, Moreau I, Falque M, Joets J (2004) Genetic architecture 16 of flowering time in maize as inferred from quantitative trait loci meta-analysis and 17 synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi AM, Jordan D, Mace E, Hammer G (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet 126:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K (2001) Molecular mapping of the Oregon Wolfe barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • Crossa J, Perez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48

    Article  CAS  PubMed  Google Scholar 

  • Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in root of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dixit S, Huang BE, Cruz MTS, Maturan PT, Ontoy JCE, Kumar A (2014) QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach. PLoS One 9:109574

    Article  CAS  Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA, Waines JG (2006) Genotypic variation for stem reserves and mobilization in wheat: I postanthesis changes in internode dry matter. Crop Sci 46:735–746

    Article  Google Scholar 

  • El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts MG (2015) Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of a rabidopsis thaliana to drought. Plant Cell Environ 38:585–599

    Article  CAS  PubMed  Google Scholar 

  • Evenson RE, Gollin G (2003) Assessing the impact of the green revolution, 1960–2000. Science 300:758–762

    Article  CAS  PubMed  Google Scholar 

  • Fakrudin B, Kavil SP, Girma Y, Arun SS, Dadakhalandar D, Gurusiddesh BH, Patil AM, Thudi M, Bhairappanavar SB, Narayana YD, Krishnaraj PU (2013) Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants 19:409–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang DD, Yu JZ (2012) Addition of 455 microsatellite marker loci to the high-density Gossypium hirsutum TM–1 × G. barbadense3–79 genetic map. J Cotton Sci 16:229–248

    CAS  Google Scholar 

  • FAO (2009) 2050 – increased investment in agricultural research essential, How to feed the world 2050 [www document].www. fao.org/news/story/en/item/35686/icode/

    Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought resistant cultivars using physio-morphological traits in rice. Field Crop Res 40:67–86

    Article  Google Scholar 

  • Galiba G, Kerepesi I, Snape JW, Sutka J (1997) Location of a gene regulating cold-induced carbohydrate production on chromosome 5A of wheat. Theor Appl Genet 95:265–270

    Article  CAS  Google Scholar 

  • Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese spring. Front Plant Sci 6:1099

    PubMed Central  PubMed  Google Scholar 

  • Gouesnard B, Rebourg C, Welcker C, Charcosset A (2002) Analysis of 12 photoperiod sensitivity within a collection of tropical maize populations. Genet Resour Crop Evol 49:471–481

    Article  Google Scholar 

  • Green AJ, Berger G, Griffey CA, Pitman R, Thomason W, Balota M (2012) Genetic yield improvement in soft red winter wheat in the eastern United States from 1919 to 2009. Crop Sci 52:2097–2108

    Article  Google Scholar 

  • Guo P, Baum M, Varshney RK, Graner A, Grando S, Ceccarelli S (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214

    Article  CAS  Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y (2012) Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil 354:395–405

    Article  CAS  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, Van Euwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  CAS  PubMed  Google Scholar 

  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton. Mol Gen Genomics 272:308–327

    Article  CAS  Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  CAS  PubMed  Google Scholar 

  • Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Chang Biol 20:867–878

    Article  PubMed  Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9:97047

    Article  CAS  Google Scholar 

  • Hu SP, Hua YANG, Zou GH, Liu HY, Liu GL, Mei HW, Run CAI, Li MS, Luo LJ (2007) Relationship between coleoptile length and drought resistance and their QTL mapping in rice. Rice Sci 14:13–20

    Article  Google Scholar 

  • Huke RE, Huke EH (1997) Rice area by type of culture: South, Southeast, and East Asia. IRRI, Los Banos

    Google Scholar 

  • Iqbal M, Khan MA, Naeem M, Aziz U, Afzal J, Latif M (2013) Inducing drought tolerance in upland cotton (Gossypium hirsutum L.), accomplishments and future prospects. World Appl Sci J 21:1062–1069

    CAS  Google Scholar 

  • IRRI (International Rice Research Institute) (2002) Rice almanac. IRRI–WARDA–CIAT–FAO, Los Banos

    Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Sreenivasulu N, Roder MS (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32:71–90

    Article  Google Scholar 

  • Kamoshita A, Wade LJ, Ali ML, Pathan MS, Zhang J, Sarkarung S, Nguyen HT (2002) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Babu RC, Manikanda Boopathi N, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Res 109:1–23

    Article  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench.). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Keerio AA, Shen C, Nie Y, Ahmed MM, Zhang X, Lin Z (2018) QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum× G. tomentosum. Int J Mol Sci 19:243

    Article  PubMed Central  CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Khayatnezhad M, Gholamin R, Jamaatie-Somarin SH, Zabihi-Mahmoodabad R (2010) Effects of PEG stress on corn cultivars (Zea mays L.) at germination stage. World Appl Sci J 11:504–506

    Google Scholar 

  • Kumar S, Sehgal SK, Kumar U, Prasad PVV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276

    Article  CAS  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562

    Article  CAS  PubMed  Google Scholar 

  • Lebreton C, Lazić-Jančić V, Steed A, Pekić S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Li ZK, Xu JL (2007) Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, pp 531–564

    Chapter  Google Scholar 

  • Li XH, Liu XD, Li MS, Zhang SH (2003) Identification of quantitative trait loci for anthesis–silking interval and yield components under drought stress in maize. Acta Bot Sin 45:852–857

    Google Scholar 

  • Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li L, Wegenast T, Longin CF, Xu X, Melchinger AE, Chen S (2010) Effect of N supply on stalk quality in maize hybrids. Field Crop Res 118:208–214

    Article  Google Scholar 

  • Li Y, Yang M, Dong Y, Wang Q, Zhou Y, Zhou Q, Shen B, Zhang F, Liang X (2012) Three main genetic regions for grain development revealed through QTL detection and meta-analysis in maize. Mol Breed 30:195–211

    Article  CAS  Google Scholar 

  • Li-Feng L, Hong-Liang Z, Ping M, Yan-Ying Q, Zi-Chao L (2007) Construction and evaluation of near-isogenic lines for major QTLs of basal root thickness and 1000–grain-weight in lowland and upland rice. Chin J Agric Biotechnol 4:199–205

    Article  CAS  Google Scholar 

  • Lima MDLA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Ling ZM, Li ZC, Yu R, Mu P (2002) Agronomic root characters of upland rice and paddy rice (Oryza sativa L.). J Chin Agric Univ 7:7–11

    Google Scholar 

  • Liu L, Sun G, Ren X, Li C, Sun D (2015) Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet 16:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, Liu ZX, Zhang YR, Dai JR (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48:1233–1243

    Article  CAS  Google Scholar 

  • Lu Y, Hao Z, Xie C, Crossa J, Araus JL, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res 124:37–45

    Article  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed Central  PubMed  Google Scholar 

  • Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Malik TA, Engineering G (2015) Genetic mapping of potential Qtls associated with drought tolerance in wheat. J Anim Plant Sci 25:1032–1040

    CAS  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T (2005) Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Int J Crop Sci 74:41–46

    CAS  Google Scholar 

  • Manschadi AM, Christopher JT, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    Article  CAS  PubMed  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, de Well P (2008) Genotypic variation in seedling root architecture traits and implications for drought adaptation in wheat (T. aestivum L.). Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • Mardani Z, Rabiei B, Sabouri H, Sabouri A (2013) Mapping of QTLs for germination characteristics under non-stress and drought stress in rice. Rice Sci 20:391–399

    Article  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Gen Genomics 281:163–179

    Article  CAS  Google Scholar 

  • McWilliam J, Baker F (1989) The dimensions of drought, drought resistance in cereals, 1989 Wallingford, UK CAB international, pp 1–11

    Google Scholar 

  • Meredith W (2005) Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne. Crop Sci 45:807–808

    Article  Google Scholar 

  • Meredith WR, Bridge RR (1971) Breakup of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci 11:695–698

    Article  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut JM (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124:93–103

    Article  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mu P, Li Z, Li C, Zhang H, Wu C, Li C, Wang X (2003) QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chin Sci Bull 48:2718–2724

    Article  Google Scholar 

  • Murty MVR, Piara S, Wani SP, Khairwal IS, Srinivas K (2007) Yield gap analysis of sorghum and pearl millet in India using simulation modeling. Global Theme on Agroecosystems Report no. 37. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India, p 82

    Google Scholar 

  • Myers D, Stolton S (1999) Organic cotton: from field to final product. Intermediate Technology Publications, London

    Book  Google Scholar 

  • Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:8. https://doi.org/10.1093/pcp/pcs185

    Article  CAS  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics consideration. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Nguyen TTT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena ACM, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genomics 272:35–46

    Article  CAS  Google Scholar 

  • Ning ZY, Chen H, Mei HX, Zhang TZ (2014) Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica 195:143–156

    Article  CAS  Google Scholar 

  • Pandey RK, Maranville JW, Chetima MM (2000) Deficit irrigation and nitrogen effects on maize in a Sahelian environment II Shoot growth, nitrogen uptake and water extraction. Agric Water Manag 46:15–27

    Article  Google Scholar 

  • Pasha MFK, Ahmad HM, Qasim M, Javed I (2015) Performance evaluation of zinnia cultivars for morphological traits under the agro-climatic conditions of Faisalabad. Europ J Biotech and Biosci 3:35–38

    Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851

    Article  PubMed  Google Scholar 

  • Paudyal KR, Ransom JK, Rajbhandari NP, Adhakari K, Gerpacio RV, Pingali PL (2001) Maize in Nepal; production systems, constraints and priorities for research. NARC and CIMMYT, Kathmandu, pp 1–56

    Google Scholar 

  • Peltzer D, Dreyer E, Polle A (2002) Temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiol Biochem 40:141–150

    Article  CAS  Google Scholar 

  • Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173

    Article  CAS  PubMed  Google Scholar 

  • Pettigrew WT (2004) Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron J 96:377–383

    Article  Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Article  Google Scholar 

  • Price AH, Steele KA, Moore BJ, Barraclough PB, Clark J (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100:49–56

    Article  CAS  Google Scholar 

  • Quarrie SA, PekicQuarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Rajendran RA, Muthiah AR, Manickam A, Shanmugasundaram P, John Joel A (2011) Indices of drought tolerance in sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Res J Agric Biol Sci 7:42–46

    Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Raza MA, Ahmad HM, Akram Z, Ali Q (2015) Performance evaluation of wheat (Triticum aestivum L.) genotypes for physiological and qualitative traits. Life Sci J 12:4

    Google Scholar 

  • Rebetzke GJ, Van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aus J Agric Res 59:891–905

    Article  CAS  Google Scholar 

  • Reddy SR (2006) Agronomy of field crops, 2nd edn. Kalyani Publishers, New Delhi, p 209

    Google Scholar 

  • Reymond MM, Leonardi B, Charcosset A, Tardieu A (2003) Combining quantitative trait loci analysis and an ecophysiological model to analysis the genetic variability of the response of leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds MP, Dreccer F, Trethowan R (2007) Drought adaptive traits derived from wheat wild relatives and landraces. J Exp Biol 58:177–186

    CAS  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manes Y, Mather DE (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Rosenow DT, Clark LE (1981) Drough tolerance in sorghum. In: Loden HD, Wilkinson D (eds) Proc. 36th Annu. Corn and Sorghum Industry Res. Conf., Chicago, IL. 9-11 Dec. ASTA, Washington, DC, pp 18–31

    Google Scholar 

  • Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  CAS  Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Guo WZ, Ullah I, Tabbasam N, Zafar Y, Mehboob R, Zhang TZ (2011) QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol 14:1–13

    Google Scholar 

  • Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought and salt-responsiveness in rice. Field Crop Res 76:199–219

    Article  Google Scholar 

  • Salem KFM, Roder MS, Borner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374

    Article  Google Scholar 

  • Sandhu N, Singh A, Dixit S, Cruz MTS, Maturan PC, Jain RK Kumar A (2014) Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet 15:63

    Article  PubMed Central  PubMed  Google Scholar 

  • Sankeshwar M, Jadhav MP, Adiger S, Patil RS, Katageri IS (2018) Mapping of QTLs for traits related to leaf pubescence, jassid resistance and yield in cotton (Gossypium spp). Int J Genet Plant Breed 78:252–260

    Google Scholar 

  • Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R (2009) Wise RP (2009) the international barley sequencing consortium – at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schussler JR, Westgate ME (1995) Assimilate flux determines kernel set at low water potential in maize. Crop Sci 35:1074–1080

    Article  Google Scholar 

  • Selote DS, Chopra RK (2004) Drought induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Physiol Plant 121:462–471

    Article  CAS  Google Scholar 

  • Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed Central  PubMed  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22

    Article  CAS  PubMed  Google Scholar 

  • Shahzad S, Chaudhry UK, Anwar B, Saboor A, Yousaf MF, Saeed F, Yaqoob S (2016) Drought stress effect on morphological and physiological characteristics of different varieties of annual verbena (Verbena hybrid). J Biodivers Environ Sci 9:32–46

    Google Scholar 

  • Shen X, Guo W, Zhu X, Yuan Y, Yu JZ, Kohel RJ, Zhang T (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181

    Article  CAS  Google Scholar 

  • Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Siahsar BA, Narouei M (2010) Mapping QTLs of physiological traits associated with salt tolerance in “Steptoe”דMorex” doubled haploid lines of barley at seedling stage. J Food Agric Environ 7:751–759

    Google Scholar 

  • Singh V, van Oosterom EJ, Jordan DR, Messina CD, Cooper M, Hammer GL (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333:287–299

    Article  CAS  Google Scholar 

  • Singh V, van Oosterom EJ, Jordan DR, Hunt CH, Hammer GL (2011) Genetic variability and control of nodal root angle in sorghum. Crop Sci 51:5

    Article  Google Scholar 

  • Singh A, Carandang J, Gonzaga ZJC, Collard BC, Ismail AM, Septiningsih EM (2017) Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. Rice 10:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Slafer GA, Araus JL, Royo C, Del Moral LFG (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Smith P, Gregory PJ, Van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B: Biol Sci 365:2941–2957

    Article  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  CAS  PubMed  Google Scholar 

  • Srividhya ALR, Vemireddy PV, Ramanarao S, Sridhar M, Jayaprada G, Anuradha B, Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Tang SY, Teng ZH, Zhai TF, Fang XF, Liu F, Liu DJ (2015) Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213

    Article  CAS  Google Scholar 

  • Tatsiopoulos IP, Tolis AJ (2003) Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain methods. Biomass Bioenergy 24:199–214

    Article  Google Scholar 

  • Tefft J (2010) White gold: cotton in francophone West Africa. In: Successes in African agriculture: lesson for the future. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Teulat B, Borries C, This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    Article  CAS  PubMed  Google Scholar 

  • Teulat B, Zoumarou-Wallia N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay-green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Toorchi M, Shashidhar HE, Gireesha TM, Hittalmani S (2003) Performance of backcrosses involving transgressant doubled haploid lines in rice under contrasting moisture regimes: yield components and marker heterozygosity. Crop Sci 43:1448–1456

    Article  Google Scholar 

  • Tuberosa R, Salvi S (2009) QTL for agronomic traits in maize production. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology, 1st edn. Springer, New York, pp 501–541

    Chapter  Google Scholar 

  • Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J Exp Bot 55:2413–2425

    Article  CAS  PubMed  Google Scholar 

  • Tyagi A, Chandra A (2006) Isolation of stress responsive PsbAgene from rice using differential display. Indian J Biochem Biophys 43:244–246

    CAS  PubMed  Google Scholar 

  • Uga Y, Okuno K, Yano M (2010) Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Mol Breed 26:533–538

    Article  Google Scholar 

  • Uga Y, Kitomi Y, Ishikawa S, Yano M (2015) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulloa M, Cantrell RG, Percy RG, Zeiger E, Lu Z (2000) QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci 4:10–18

    CAS  Google Scholar 

  • Upadyayula N, Da Silva H, Bohn M, Rocheford T (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112:592–606

    Article  CAS  PubMed  Google Scholar 

  • Van Herwaarden A, Richards R, Angus J (2006) Water-soluble carbohydrates and yield in wheat. The Australian Society of Agronomy. Available via DIALOG. http://www.regional.org.au/au/asa/2003/c/6/vanherwaarden.htm. Cited 15 Jun 2006

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL× environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Bool ME, Dalid CO, Bernier J, Kumar A, Atlin GN (2009) Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167:261–269

    Article  CAS  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, Pan JJ, Kohel RJ, Zhang TZ (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang J, Jia Q, Zhu J, Shang Y, Hua W, Zhou M (2014) A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS One 9:e90144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Huang C, Guo H, Li X, Zhao W, Dai B, Yan Z, Lin Z (2015) QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS One 0:6

    Google Scholar 

  • Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redoña E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Wasson AP, Richards RA, Chatrath R, Misra SC, Sai Prasad SV, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crop. J Exp Bot 63:3485–3498

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Cronn RC (2002) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Wang R, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000a) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Rosenow DT, Nguyen HT (2000b) Stay-green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119:365–367

    Article  CAS  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007a) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007b) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol 49:646–654

    Article  CAS  Google Scholar 

  • Yang ZB, Bai ZY, Li XL, Wang P, Wu QX, Yang L (2012) SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet 125:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253

    Article  CAS  Google Scholar 

  • Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX, Zhang XL (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Yu S, Gore M, Wu M, Zhai H, Li X, Fan S, Song M, Zhang J (2013) Identification of quantitative trait loci across interspecific F–2, F–2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191:375–389

    Article  CAS  Google Scholar 

  • Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

  • Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li W, Chang X, Li R, Jing R (2014) Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS One 9:102917

    Article  Google Scholar 

  • Zhao XQ, Xu JL, Zhao M, Lafitte R, Zhu LH, Fu BY, Gao YM, Li ZK (2008) QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci 174:618–625

    Article  CAS  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS, Ali ML, Huang N, Courtois B, Nguyen TH (1999) Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61

    Article  Google Scholar 

  • Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128:54–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gökçe, A.F., Chaudhry, U.K. (2020). Use of QTL in Developing Stress Tolerance in Agronomic Crops. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_25

Download citation

Publish with us

Policies and ethics