Skip to main content

Abiotic Stress Tolerance in Wheat and the Role of Silicon: An Experimental Evidence

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Silicon (Si) has beneficial effect on crop growth and development under water stress condition. The study about the effect of silicon application on growth and water relation of wheat under water-limited conditions was carried out in pots at PMAS Arid Agriculture University, Rawalpindi, Pakistan. Seeds of two cultivars, i.e., NARC-2009 and Chakwal-50, were taken from the National Agricultural Research Center (NARC). In this experiment, as the source of silicon, silicic acid, sodium silicate, and silica gel were used in the silicon-applied treatments. The effect of silicic acid, sodium silicate, and silica gel at rate of 0.5%, 1.0%, and 1.5% solution was investigated for germination, physiological, and yield traits, and it was compared with control. Physiological parameters like leaf membrane stability index, epicuticular wax, crop growth rate, relative water content, stomatal conductance, transpiration rate, photosynthetic rate, leaf area, leaf area index, chlorophyll contents, leaf succulence, relative leaf water contents, silicon concentration in leaves, and proline contents were measured. The results depicted that different silicon rates and application levels have a significant impact upon crop growth and development. Wheat crop responded well to silicon priming treatments. Maximum grain yield was obtained for silica gel with 1.5% silicon application level, whereas minimum grain yield was obtained by control treatment. Similarly, genotypes responded significantly to silicon priming treatments for grain production. Cultivar NARC-2009 performed well under different silicon regime of the rainfed zone of pothwar, while cultivar Chakwal-50 gave less seed production. Silicon priming could be a good viable option in the future to cope abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96ā€“103

    ArticleĀ  Google ScholarĀ 

  • Aggarwal P (2008) Global climate change and Indian agriculture: impacts, adaptation and mitigation. Indian J Agric Sci 78:911

    Google ScholarĀ 

  • Ahmad F, Rahmatullah T, Aziz MA, Maqsood A, Tahir M, Kanwal S (2007) Effect of silicon application on wheat (Triticum aestivum L) growth under water deficiency stress. Emir J Food Agric 19(2):01ā€“07

    ArticleĀ  Google ScholarĀ 

  • Ahmed M, Hassen F, Khurshid Y (2011) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Mgt 98:1808ā€“1812

    ArticleĀ  Google ScholarĀ 

  • Alvarez J, Datnoff LE (2001) The economic potential of silicon for integrated management and sustainable rice production. Crop Prot 20:43ā€“48

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:69

    ArticleĀ  Google ScholarĀ 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of Nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9:246

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Azeem M, Iqbal N, Kausar S, Javed MT, Akram MS, Sajid MA (2015) Efficacy of silicon priming and fertigation to modulate seedlingā€™s vigor and ion homeostasis in wheat (Triticum aestivum L.) under saline environment. Environ Sci Pollut Res Int 22:14367ā€“14371. https://doi.org/10.1007/s11356-015-4983-8

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205ā€“207

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Birsin MA (2005) Effects of removal of some photosynthetic structures on some yield components in wheat. Tarim Bilimleri Dergisi 11:364ā€“367

    Google ScholarĀ 

  • Chandrasekar V, Sarium RK, Srivastava GC (2000) Physiology and biological response of hexaploid and tetraploid wheat to stress. J Agron Crop Sci 18:219ā€“227

    ArticleĀ  Google ScholarĀ 

  • Chang-juan S (2006) Effect of Soil Drought on the photosynthetic rate, transpiration rate and water use efficiency of the seedlings of four winter wheat varieties. J Henan Agric Sci 1ā€“11

    Google ScholarĀ 

  • Chen D, Wang S, Yin L, Deng X (2018) How does silicon mediate plant water uptake and loss under water deficiency? Front Plant Sci 9:281

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524ā€“531

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dagmar D, Simone H, Wolfgang B, RĆ¼diger F, BƤucker E, RĆ¼hle G, Otto W, GĆ¼nter M (2003) Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Anal Bioanal Chem 376(3):399ā€“404

    ArticleĀ  CASĀ  Google ScholarĀ 

  • De Melo SP, Korndƶrfer GH, Korndƶrfer CM, Lana RMQ, De Santana DG (2003) Silicon accumulation and water deficit tolerance in brachiaria grasses. Sci Agric 60:755ā€“759

    ArticleĀ  Google ScholarĀ 

  • Dehghanipoodeh S, Ghobadi C, Baninasab B, Gheysari M, Shiranibidabadi S (2018) Effect of silicon on growth and development of strawberry under water deficit conditions. Hortic Plant J 4:226ā€“232

    ArticleĀ  Google ScholarĀ 

  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26(2003):1055ā€“1063

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313ā€“321

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2005a) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743ā€“749

    ArticleĀ  Google ScholarĀ 

  • Hattori T, Inanaga S, Araki H, An P, Mortia S, Luxova M, Lux A (2005b) Application of silicon enhanced drought tolerance in sorghum bicolor. Physiol Plant 123:459ā€“466

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hodson MJ, Sangster AG (1988) Observations on the distribution of mineral elements in the leaf of wheat (Triticum aestivum L), with particular reference to silicon. Ann Bot 62:463ā€“471

    ArticleĀ  Google ScholarĀ 

  • Humayun MS, da Cruz L, Dagnelie G, Mohand-Said S, Stanga P, Agrawal RN, Greenberg RJ, Argus II Study Group (2010) Interim performance results from the second sight(R) ArgusTM II retinal prosthesis study. Invest Ophthalmol Vis Sci 2022:51. [ARVO e-abstract]

    Google ScholarĀ 

  • Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus Annuus). Bot Lith 21(1):13ā€“21. Retrieved 31 Mar 2018, from https://doi.org/10.1515/botlit-2015-0002

  • Joanna M, Simone H, Werner GA, Gunter M, Rudiger F, Ernst B, Otto W (2007) Effect of silicon fertilizers on silicon accumulation in wheat. J Plant Nutr Soil Sci 17:769ā€“772

    Google ScholarĀ 

  • Korndorfer GH, Lepsch I (2001) Effect of silicon on plant growth and crop yield. In: Silicon in agriculture: studies in plant science, vol 8. Elsevier Science B.V, Amsterdam, pp 115ā€“131

    ChapterĀ  Google ScholarĀ 

  • Korndƶrfer GH, Lepsch I (2001) Chapter 7 effect of silicon on plant growth and crop yield. In: Datnoff LE, Snyder GH, Korndƶrfer GH (eds) Studies in plant science. Elsevier

    Google ScholarĀ 

  • Latef AAA, Tran L-SP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7(243). https://doi.org/10.3389/fpls.2016.00243

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:157ā€“1164

    ArticleĀ  Google ScholarĀ 

  • Liang Y, Si J, RĀØomheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797ā€“804

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitation to photosynthesis? Procedure and sources of error. J Exp Bot 54:2393ā€“2401

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87ā€“92

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. Elsevier Science, Amsterdam, pp 17ā€“39

    Google ScholarĀ 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688ā€“691

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maghsoudi K, Emam Y, Pessarakli M (2016) Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr 39:1001ā€“1015

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mamrutha HM, Singh R, Sharma D, Venkatesh K, Pandey GC, Kumar R, Tiwari R, Sharma I (2019) Physiological and molecular basis of abiotic stress tolerance in wheat. In: Rajpal VR, Sehgal D, Kumar A, Raina SN (eds) Genetic enhancement of crops for tolerance to abiotic stress: mechanisms and approaches, vol I. Springer International Publishing, Cham

    Google ScholarĀ 

  • Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient Sol. J Plant Nutr 31:1867ā€“1876

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Matichenkov VV, Bocharnikova EA, Ammosova JM (2001) The influence of silicon fertilizers on the plants and soils. Agrochemistry 12:30ā€“37

    Google ScholarĀ 

  • Mecfel J, Hinke S, Goedel WA, Marx G, Fehlhaber R, BƤucker E, Wienhaus O (2007) Effect of silicon fertilizers on silicon accumulation in wheat. J Plant Nutr Soil Sci 170:769ā€“772

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Monneveux P, SĆ”nchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180ā€“191

    ArticleĀ  Google ScholarĀ 

  • Mukkram AT, Rahmatullah AT, Ashraf M, Shamsa K, Maqsood MA (2006) Beneficial effects of Silicon in wheat (Triticum aestivum L.) under salinity stress. Pak J Bot 38(5):1715ā€“1722

    Google ScholarĀ 

  • Paknejad F, Nasri M, Moghadam HT, Zahedi H, Alahmadi MJ (2007) Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J Biol Sci 7:841ā€“847

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rodrigues FA, Datnoff LE (eds) (2015) Silicon and plant diseases. Springer, Cham, pp 67ā€“100

    BookĀ  Google ScholarĀ 

  • Rodrigues FƁ, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, BĆ©langer RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177ā€“183

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Romero-Arnada MR, Jourado O, Cuartero J (2006) Silicon alleviates the deleterious salt effects on tomato plant growth by improving plant water status. J Plant Phy 163(8):847ā€“855

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sundahri T, Bell CJ, Salel PWG, Peries R (2001) Response of canola and wheat to applied silicate and gypsum on raised beds. Proc. 10th Australian Agronomy Conference 2001. Available online www.regional.org.au/au/asa/2001/p/14/sundahri.htm

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853ā€“1903

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shu LZ, Liu YH (2001) Effects of silicon on growth of maize seedlings under salt stress. Agro-Environ Prot 20:38ā€“40

    Google ScholarĀ 

  • Silva FAM, Baker EA, Martin JT (1964) Studies of plant cuticle vi. The isolation and fractionation of cuticular waxes. Ann Appl Biol 53:43ā€“58

    ArticleĀ  Google ScholarĀ 

  • Singh K, Singh R, Singh JP, Singh Y, Singh KK (2006) Effect of level and time of silicon application on growth, yield and its uptake by rice (Oryza sativa). Indian J Agric Sci 76(7):410ā€“413

    CASĀ  Google ScholarĀ 

  • Tamai K, Ma JF (2008) Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307:21ā€“27

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van Bockhaven J, De Vleesschauwer D, Hofte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281ā€“1293. https://doi.org/10.1093/jxb/ers329

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602ā€“5607. https://doi.org/10.1073/pnas.0510213103

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S (2017) Role of silicon on plant-pathogen interactions. Front Plant Sci 8:701ā€“701

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z et al (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci U S A 110:E3631ā€“E3639. https://doi.org/10.1073/pnas.1305848110

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559ā€“565

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Younis ME, El-Shahaby OA, Abo-Hamed SA, Ibrahim AH (2000) Effects of water stress on growth, pigments and 14CO2 assimilation in three sorghum cultivars. J Agron Crop Sci 185:73ā€“82

    ArticleĀ  Google ScholarĀ 

  • Zhao H, Guo C, Duan W, Qi Y, Wang X, Li Y, Xiao K (2007) Studies on evaluation indices for drought resistance capacity in wheat varieties. J Plant Genet Resour 1:76ā€“81

    Google ScholarĀ 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527ā€“533

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhu Y-X, Gong H-J, Yin J-L (2019) Role of silicon in mediating salt tolerance in plants: a review. Plants 8:147

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Appendices

Appendices

22.1.1 Appendix 22.1: Analysis of Variance for Silicon Concentration in Plants atĀ Three-Leaf Stage AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

2.57E-04

2.57E-04

620.76

āˆ—āˆ—āˆ—

Treatments (T)

3

0.0058

0.00193

4669.49

āˆ—āˆ—āˆ—

Application level (L)

2

1.08E-05

5.39E-06

13

āˆ—āˆ—āˆ—

CĀ Ć—Ā T

3

6.15E-05

2.05E-05

49.46

āˆ—āˆ—āˆ—

CĀ Ć—Ā L

2

8.79E-07

4.40E-07

1.06

NS

TĀ Ć—Ā L

6

1.57E-05

2.62E-06

6.32

āˆ—āˆ—āˆ—

CĀ Ć—Ā TĀ Ć—Ā L

6

2.98E-06

4.96E-07

1.2

NS

Error

48

1.99E-05

4.14E-07

Ā Ā 

Total

71

0.00617

Ā Ā Ā 

CV

3.97

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.2 Appendix 22.2: Analysis of Variance for Silicon Concentration in Plants atĀ Anthesis Stage AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

1.13E-04

1.13E-04

78.13

āˆ—āˆ—āˆ—

Treatments (T)

3

0.03835

0.01278

8818.93

āˆ—āˆ—āˆ—

Application level (L)

2

1.03E-04

5.15E-05

35.5

āˆ—āˆ—āˆ—

CĀ Ć—Ā T

3

4.27E-05

1.42E-05

9.82

āˆ—āˆ—āˆ—

CĀ Ć—Ā L

2

8.58E-07

4.29E-07

0.3

NS

TĀ Ć—Ā L

6

1.60E-04

2.66E-05

18.37

āˆ—āˆ—āˆ—

CĀ Ć—Ā TĀ Ć—Ā L

6

3.34E-06

5.56E-07

0.38

NS

Error

48

6.96E-05

1.45E-06

Ā Ā 

Total

71

0.03884

Ā Ā Ā 

CV

2.91

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.3 Appendix 22.3: Analysis of Variance for Silicon Concentration in Plants atĀ Maturity Stage AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

2.31E-04

2.31E-04

78.13

āˆ—āˆ—āˆ—

Treatments (T)

3

7.83E-02

2.61E-02

8818.93

āˆ—āˆ—āˆ—

Application level (L)

2

2.10E-04

1.05E-04

35.5

āˆ—āˆ—āˆ—

CĀ Ć—Ā T

3

8.72E-05

2.91E-05

9.82

āˆ—āˆ—āˆ—

CĀ Ć—Ā L

2

1.75E-06

8.75E-07

0.3

NS

TĀ Ć—Ā L

6

3.26E-04

5.44E-05

18.37

āˆ—āˆ—āˆ—

CĀ Ć—Ā TĀ Ć—Ā L

6

6.81E-06

1.13E-06

0.38

NS

Error

48

1.42E-04

2.96E-06

Ā Ā 

Total

71

7.93E-02

Ā Ā Ā 

CV

2.91

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.4 Appendix 22.4: Analysis of Variance for Photosynthetic Rate AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

40.95

40.951

5.08

āˆ—āˆ—

Application level (L)

2

18.81

9.403

1.17

NS

Treatment (T)

3

125.27

41.756

5.18

āˆ—āˆ—āˆ—

GĀ Ć—Ā L

2

67.33

33.665

4.17

āˆ—āˆ—

TĀ Ć—Ā G

3

414.79

138.265

17.14

āˆ—āˆ—āˆ—

LĀ Ć—Ā T

6

64.19

10.698

1.33

NS

GĀ Ć—Ā TĀ Ć—Ā L

6

56.23

9.372

1.16

NS

Error

48

387.11

8.065

Ā Ā 

Total

71

1174.68

Ā Ā Ā 

CV

12.02

Ā Ā Ā Ā 
  1. āˆ—āˆ—p ā‰¤ 0.01, āˆ—āˆ—āˆ—p ā‰¤ 0.001, and NS = Non-significant

22.1.5 Appendix 22.5: Analysis of Variance for Transpiration Rate AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

41.299

41.2989

146.66

āˆ—āˆ—āˆ—

Application level (L)

2

7.796

3.8982

13.84

āˆ—āˆ—āˆ—

Treatment (T)

3

123.364

41.1212

146.02

āˆ—āˆ—āˆ—

GĀ Ć—Ā L

2

0.013

0.0066

0.02

NS

TĀ Ć—Ā G

3

0.588

0.1961

0.7

NS

LĀ Ć—Ā T

6

1.589

0.2648

0.94

NS

GĀ Ć—Ā TĀ Ć—Ā L

6

0.085

0.0141

0.05

NS

Error

48

13.517

0.2816

Ā Ā 

Total

71

188.251

Ā Ā Ā 

CV

6.55

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.6 Appendix 22.6: Analysis of Variance for Stomatal Conductance AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

0.32

0.32

216.14

āˆ—āˆ—āˆ—

Application level (L)

2

0.05202

0.02601

17.57

āˆ—āˆ—āˆ—

Treatment (T)

3

0.87983

0.29328

198.09

āˆ—āˆ—āˆ—

GĀ Ć—Ā L

2

0.00068

0.00034

0.23

NS

TĀ Ć—Ā G

3

0.00974

0.00325

2.19

NS

LĀ Ć—Ā T

6

0.00736

0.00123

0.83

NS

GĀ Ć—Ā TĀ Ć—Ā L

6

0.00021

0.00004

0.02

NS

Error

48

0.07107

0.00148

Ā Ā 

Total

71

1.34091

Ā Ā Ā 

CV

6.1

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.7 Appendix 22.7: Analysis of Variance for Stomatal Resistance AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

0.005

0.005

0.05

NS

Application level (L)

2

0.50083

0.25042

2.46

āˆ—

Treatment (T)

3

0.75278

0.25093

2.47

āˆ—

GĀ Ć—Ā L

2

1.08583

0.54292

5.34

āˆ—āˆ—āˆ—

TĀ Ć—Ā G

3

0.34833

0.11611

1.14

NS

LĀ Ć—Ā T

6

0.68139

0.11356

1.12

NS

GĀ Ć—Ā TĀ Ć—Ā L

6

0.50083

0.08347

0.82

NS

Error

48

4.88

0.10167

Ā Ā 

Total

71

8.755

Ā Ā Ā 

CV

49.69

Ā Ā Ā Ā 
  1. āˆ—p ā‰¤ 0.05, āˆ—āˆ—āˆ—p ā‰¤ 0.001, and NS = Non-significant

22.1.8 Appendix 22.8: Analysis of Variance for Chlorophyll Contents AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

350.46

350.463

326.22

āˆ—āˆ—āˆ—

Application level (L)

2

106.22

53.1093

49.44

āˆ—āˆ—āˆ—

Treatment (T)

3

3030.77

1010.26

940.38

āˆ—āˆ—āˆ—

CĀ Ć—Ā L

2

0.24

0.12043

0.11

NS

TĀ Ć—Ā C

3

6.87

2.29083

2.13

NS

LĀ Ć—Ā T

6

8.91

1.48531

1.38

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.02

0.00337

0

NS

Error

48

51.57

1.07431

Ā Ā 

Total

71

3555.07

Ā Ā Ā 

CV

2.24

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.9 Appendix 22.9: Analysis of Variance for Drought-Resistant Index AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

0.00262

0.00131

6.1

āˆ—āˆ—āˆ—

Treatments (T)

3

0.0864

0.0288

134.14

āˆ—āˆ—āˆ—

Cultivar (C)

1

0.12083

0.12083

562.76

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

0.00112

1.87E-04

0.87

NS

CĀ Ć—Ā L

2

9.93E-06

4.97E-06

0.02

NS

CĀ Ć—Ā T

3

3.28E-04

1.09E-04

0.51

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

4.26E-06

7.10E-07

0

NS

Error

48

0.01031

2.15E-04

Ā Ā 

Total

71

0.22161

Ā Ā Ā 

CV

3.05

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.10 Appendix 22.10: Analysis of Variance for Epicuticular Wax AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

0.5548

0.2774

0.49

NS

Treatments (T)

3

18.3074

6.1025

10.75

āˆ—āˆ—āˆ—

Cultivar (C)

1

44.2765

44.2765

77.99

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

0.2378

0.0396

0.07

NS

CĀ Ć—Ā L

2

0.0044

0.0022

0

NS

CĀ Ć—Ā T

3

0.1446

0.0482

0.08

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.0019

0.0003

0

NS

Error

48

27.2494

0.5677

Ā Ā 

Total

71

90.7767

Ā Ā Ā 

CV

10.78

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.11 Appendix 22.11: Analysis of Variance for Relative Water Content AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

28.65

14.3247

1.76

NS

Treatments (T)

3

945.43

315.143

38.71

āˆ—āˆ—āˆ—

Cultivar (C)

1

1166.94

1166.94

143.32

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

12.28

2.04638

0.25

NS

CĀ Ć—Ā L

2

0.07

0.03454

0

NS

CĀ Ć—Ā T

3

2.28

0.75989

0.09

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.03

0.00493

0

NS

Error

48

390.82

8.14209

Ā Ā 

Total

71

2546.5

Ā Ā Ā 

CV

3.6

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.12 Appendix 22.12: Analysis of Variance for Leaf Succulence AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

2.173

1.087

0.44

NS

Treatments (T)

3

71.714

23.905

9.57

āˆ—āˆ—āˆ—

Cultivar (C)

1

181.341

181.341

72.62

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

0.931

0.155

0.06

NS

CĀ Ć—Ā L

2

0.018

0.009

0

NS

CĀ Ć—Ā T

3

0.599

0.2

0.08

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.008

0.001

0

NS

Error

48

119.863

2.497

Ā Ā 

Total

71

376.647

Ā Ā Ā 

CV

11.42

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.13 Appendix 22.13: Analysis of Variance for Leaf Membrane Stability Index AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

28.65

14.325

1.15

NS

Treatments (T)

3

945.43

315.143

25.37

āˆ—āˆ—āˆ—

Cultivar (C)

1

955.29

955.293

76.91

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

12.28

2.046

0.16

NS

CĀ Ć—Ā L

2

0.07

0.035

0

NS

CĀ Ć—Ā T

3

2.28

0.76

0.06

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.03

0.005

0

NS

Error

48

596.24

12.422

Ā Ā 

Total

71

2540.27

Ā Ā Ā 

CV

4.75

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.14 Appendix 22.14: Analysis of Variance for Proline Content AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

28.65

14.325

6.25

āˆ—āˆ—āˆ—

Treatments (T)

3

945.43

315.143

137.4

āˆ—āˆ—āˆ—

Cultivar (C)

1

955.29

955.293

416.5

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

12.28

2.046

0.89

NS

CĀ Ć—Ā L

2

0.07

0.035

0.02

NS

CĀ Ć—Ā T

3

2.28

0.76

0.33

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.03

0.005

0

NS

Error

48

110.09

2.294

Ā Ā 

Total

71

2054.12

Ā Ā Ā 

CV

3.02

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.15 Appendix 22.15: Analysis of Variance for Plant Height AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

28.65

14.3247

1.23

NS

Treatments (T)

3

945.43

315.143

26.96

āˆ—āˆ—āˆ—

Cultivar (C)

1

1700.04

1700.04

145.44

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

12.28

2.04638

0.18

NS

CĀ Ć—Ā L

2

0.07

0.03454

0

NS

CĀ Ć—Ā T

3

2.28

0.75989

0.07

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.03

0.00493

0

NS

Error

48

561.08

11.6891

Ā Ā 

Total

71

3249.86

Ā Ā Ā 

CV

4.26

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.16 Appendix 22.16: Analysis of Variance for Grain PerĀ Spike AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

31.3

15.652

6.57

āˆ—āˆ—āˆ—

Treatments (T)

3

987.4

329.133

138.07

āˆ—āˆ—āˆ—

Cultivar (C)

1

945.91

945.909

396.82

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

13.42

2.236

0.94

NS

CĀ Ć—Ā L

2

0.08

0.038

0.02

NS

CĀ Ć—Ā T

3

1.01

0.338

0.14

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.03

0.005

0

NS

Error

48

114.42

2.384

Ā Ā 

Total

71

2093.57

Ā Ā Ā 

CV

3.66

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.17 Appendix 22.17: Analysis of Variance for Spike Length AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

3.478

1.739

6.57

āˆ—āˆ—āˆ—

Treatments (T)

3

109.711

36.57

138.07

āˆ—āˆ—āˆ—

Cultivar (C)

1

105.101

105.101

396.82

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

1.491

0.248

0.94

NS

CĀ Ć—Ā L

2

0.008

0.004

0.02

NS

CĀ Ć—Ā T

3

0.113

0.038

0.14

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.004

0.001

0

NS

Error

48

12.713

0.265

Ā Ā 

Total

71

232.619

Ā Ā Ā 

CV

3.66

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.18 Appendix 22.18: Analysis of Variance for Spikelet PerĀ Spike AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

3.478

1.739

6.57

āˆ—āˆ—āˆ—

Treatments (T)

3

109.711

36.57

138.07

āˆ—āˆ—āˆ—

Cultivar (C)

1

105.101

105.101

396.82

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

1.491

0.248

0.94

NS

CĀ Ć—Ā L

2

0.008

0.004

0.02

NS

CĀ Ć—Ā T

3

0.113

0.038

0.14

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

0.004

0.001

0

NS

Error

48

12.713

0.265

Ā Ā 

Total

71

232.619

Ā Ā Ā 

CV

3.16

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.19 Appendix 22.19: Analysis of Variance for Hundred Grain Weight AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Application level (L)

2

0.35622

0.17811

7.64

āˆ—āˆ—āˆ—

Treatments (T)

3

13.8041

4.60137

197.32

āˆ—āˆ—āˆ—

Cultivar (C)

1

18

18

771.89

āˆ—āˆ—āˆ—

TĀ Ć—Ā L

6

0.06434

0.01072

0.46

NS

CĀ Ć—Ā L

2

1.58E-31

7.90E-32

0

NS

CĀ Ć—Ā T

3

7.41E-31

2.47E-31

0

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

2.57E-31

4.29E-32

0

NS

Error

48

1.11932

0.02332

Ā Ā 

Total

71

33.344

Ā Ā Ā 

CV

3.92

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.20 Appendix 22.20: Analysis of Variance for Biological Yield AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

2,321,931

2,321,931

17.61

āˆ—āˆ—āˆ—

Treatment (T)

3

2.48E+08

8.25E+07

625.76

āˆ—āˆ—āˆ—

Application level (L)

2

1.44E+07

7,199,275

54.6

āˆ—āˆ—āˆ—

TĀ Ć—Ā C

3

59000.3

19666.8

0.15

NS

CĀ Ć—Ā L

2

4844.28

2422.14

0.02

NS

LĀ Ć—Ā T

6

9,146,901

1,524,483

11.56

āˆ—āˆ—āˆ—

CĀ Ć—Ā TĀ Ć—Ā L

6

797.112

132.852

0

NS

Error

48

6,328,712

131,848

Ā Ā 

Total

71

2.80E+08

Ā Ā Ā 

CV

3.01

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

22.1.21 Appendix 22.21: Analysis of Variance for Grain Yield AmongĀ two Wheat Cultivars for Different Silicon Chemicals and Different Application Levels

SoV

DF

SS

MS

F

P

Cultivar (C)

1

2.12E+07

2.12E+07

131.53

āˆ—āˆ—āˆ—

Treatment (T)

3

4,541,380

1,513,793

9.38

āˆ—āˆ—āˆ—

Application level (L)

2

5,333,167

2,666,584

16.52

āˆ—āˆ—āˆ—

TĀ Ć—Ā C

3

166,185

55,395

0.34

NS

CĀ Ć—Ā L

2

195,159

97579.6

0.6

NS

LĀ Ć—Ā T

6

1,584,736

264,123

1.64

NS

CĀ Ć—Ā TĀ Ć—Ā L

6

57,991

9665.17

0.06

NS

Error

48

7,745,683

161,368

Ā Ā 

Total

71

4.09E+07

Ā Ā Ā 

CV

14.15

Ā Ā Ā Ā 
  1. āˆ—āˆ—āˆ—p ā‰¤ 0.001 and NS = Non-significant

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, M. et al. (2020). Abiotic Stress Tolerance in Wheat and the Role of Silicon: An Experimental Evidence. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_22

Download citation

Publish with us

Policies and ethics