Skip to main content

Responses and Tolerance of Cereal Crops to Metal and Metalloid Toxicity

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Soil acts as a sink for a number of organic and inorganic pollutants, through which these enter into the food chain and become a potential source of human diseases. Heavy metal (Cd, Cu, Cr, Fe, Ni, Pb, Zn) and metalloid (As, Sb) contamination of soil resources is increasing due to natural and anthropogenic activities. Currently, metal(loid) accumulation is one of the most serious environmental concerns owing to their toxicity to crops. Agronomic crops, mainly cereals (wheat, Triticum aestivum; maize, Zea mays; rice, Oryza sativa), are cultivated on large area and, thereby, are more vulnerable to metal(loid) toxicity, affecting crop growth (seed germination, root/shoot length, and biomass), physiology (water relation, pigmentation, photosynthetic machinery), and metabolic processes (reactive oxygen species (ROS), lipid peroxidation, protein degradation). However, to counter these anomalies, crops are equipped with antioxidants (CAT, POD, SOD, APX, GR, proline, phenolics) to detoxify metal-induced ROS and proteins (phytochelatins, PCs; metallothioneins, MTs) to sequester metal(loid)s. Thus, further insight into these processes is important to exploit better metal-contaminated areas for raising crops, generate revenue, and feed ever-increasing population. Therefore, we present an overview of heavy metal(loid) pollution in soil; their toxicity to cereals (wheat, maize, rice) at morphological, physiological, and cellular levels; and their tolerance mechanisms. At the end, we explore the symbiotic association of cereal crops to a microbe in scavenging metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

acid invertase

APX:

ascorbate peroxidase

AsA:

ascorbic acid

ATP:

adenosine triphosphate

CAT:

catalase

CCA:

copper-chromium-arsenic

DHAR:

dehydroascorbate reductase

ETS:

electron transport system

GDH:

glutamate dehydrogenase

GOGAT:

glutamine oxoglutarate aminotransferase

GPOD:

guaiacol peroxidase

GR:

glutathione reductase

GST:

glutathione-S-transferase

HMW:

high molecular weight

IAA:

indole-3-acetic acid

IBA:

indole butyric acid

MDA:

malondialdehyde

MDHAR:

monodehydroascorbate reductase

MT:

metallothioneins

NAA:

naphthaleneacetic acid

POD:

peroxidase

SOD:

superoxide dismutase

References

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Ahmad JU, Goni MA (2010) Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ Monit Assess 166:347–357

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Jamil A (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot 44:1569–1574

    Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Zahir ZA (2013) Comparative efficacy of growth media in causing cadmium toxicity to wheat at seed germination stage. Int J Agric Biol 15:517–522

    CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A (2014) Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res 21:11054–11065

    Article  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir Z, Mitter B (2015) Organic amendments: effects on cereals growth and cadmium remediation. Int J Environ Sci Technol 12:2919–2928

    Article  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35:303–315

    Article  CAS  Google Scholar 

  • Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  CAS  PubMed  Google Scholar 

  • Akbulut M, Cakır S (2010) The effect of Se phytotoxicity on the antioxidant system so flea tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166

    Article  CAS  PubMed  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Ibrahim M, Gill RA, Khan MD (2015) Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ Sci Pollut Res 22:10601–10609

    Article  CAS  Google Scholar 

  • Allagulova CR, Maslennikova DR, Avalbaev AM, Fedorova KA, Yuldashev RA, Shakirova FM (2015) Influence of 24-Epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress. Russ J Plant Physiol 62:499–505

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway B (ed) Heavy metals in soils. Environmental pollution, vol 22. Springer, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Ansarypour Z, Shahpiri A (2017) Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Braz J Microbiol 48:537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antibachi D, Kelepertzis E, Kelepertis A (2012) Heavy metals in agricultural soils of the Mouriki-Thiva area and environmental impact implications. Soil Sedim Contam 21:434–450

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Wevar Oller AL, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010) Presoaking seed treatment of 24-epiBL modulates Cr stress in Brassica juncea L. plants. Terr Aquatic Environ Toxicol 5:14–18

    Google Scholar 

  • Ashraf MF, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bensidhoum L, Nabti E, Tabli N, Kupferschmied P, Weiss A, Rothballer M, Schmid M, Keel C, Hartmann A (2016) Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46

    Article  CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Baker AJ (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajana A, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Haz Mater 266:141–166

    Article  CAS  Google Scholar 

  • Bortey-Sam N, Nakayama SMM, Akoto O, Ikenaka Y, Baidoo E, Mizukawa H, Ishizuka M (2015) Ecological risk of heavy metals and a metalloid in agricultural soils in Tarkwa, Ghana. Int J Environ Res Public Health 12:11448–11465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ (2010) The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ Microbiol Rep 2:419–425

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Xu Z, Ren M, Guo Q, Hu X, Hu G, Wan H, Peng P (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environ Saf 78:2–8

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, Zhu Y, Binzeng H, Zhao H, Kuai B (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    Article  CAS  Google Scholar 

  • Capdevila M, Atrian S (2011) Metallothionein protein evolution: A miniassay. J Biol Inorg Chem 16:977–989

    Article  CAS  PubMed  Google Scholar 

  • Chapagain S, Park YC, Jang CS (2017) Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses. J Crop Sci Biotechnol 20:351–357

    Article  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsenate by glutathione-a magnetic-resonance study. Chem Biol Interact 90:139–155

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Tan M, Zhang C, Zhang Z, Zhang A, Kang Y (2009) Hexavalent chromium (VI) stress induces mitogen-activated protein kinase activation mediated by distinct signal molecules in roots of Zea mays L. Environ Exp Bot 67:328–334

    Article  CAS  Google Scholar 

  • Ditta A (2013) Salt tolerance in cereals: molecular mechanisms and applications. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, New Delhi, pp 133–154

    Chapter  Google Scholar 

  • Ditta A, Khalid A (2016) Bio-organo-phos: a sustainable approach for managing phosphorus deficiency in agricultural soils. In: Larramendy M, Soloneski S (eds) Organic fertilizers – From basic concepts to applied outcomes. InTech, Croatia, pp 109–136

    Google Scholar 

  • Ditta A, Arshad M, Zahir ZA, Jamil A (2015) Comparative efficacy of rock phosphate enriched organic fertilizer vs. mineral phosphatic fertilizer for nodulation, growth and yield of lentil. Int J Agric Biol 17:589–595

    Article  CAS  Google Scholar 

  • Ditta A, Muhammad J, Imtiaz M, Mehmood S, Qian Z, Tu S (2018) Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int J Recycl Org Waste Agric 7(1):33–40

    Article  Google Scholar 

  • Dong J, Wu FB, Zhang GP (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Uni Sci B 6:974–980

    Article  CAS  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag S, Mantri S, Asif M, Rai A, Kumar S, Shri M, Tripathi P, Tripathi R, Trivedi P, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr(VI) stress. BMC Genomics 11:648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  CAS  PubMed  Google Scholar 

  • Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, Szepesi Á, Gémes K, Laskay G, Erdei L, Kolbert Z (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92:213–217

    Article  CAS  PubMed  Google Scholar 

  • Furini A (ed) (2012) Plants and heavy metals. Springer, Dordrecht, pp 1–86

    Book  Google Scholar 

  • Gajdos É, Lévai L, Veres S, Kovács B (2012) Effects of biofertilizers on maize and sunflower seedlings under cadmium stress. Commun Soil Sci Plant Anal 43(1–2):272–279

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  PubMed  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Angel J, Blein J, Ranjeva R, Montillet J (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  PubMed  Google Scholar 

  • Gautam M, Sengar RS, Chaudhary R, Sengar K, Garg S (2010) Possible cause of inhibition of seed germination in two rice cultivars by heavy metals Pb2+ and Hg2+. Toxicol Environ Chem 92:1111–1119

    Article  CAS  Google Scholar 

  • Ghani A (2010) Effect of lead toxicity on growth, chlorophyll and lead (Pb2+) contents of two varieties of maize (Zea mays L). Pak J Nut 9:887–891

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W (2016) Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics 17:885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35:1000–1012

    Article  CAS  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang Y-C (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant K, Carey NM, Mendoza M, Schulze J, Pilon M, Pilon-Smits EAH et al (2011) Adenosine 5-phospho sulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenite toxicity. Biochem J 438:325–335

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci 22:503–511

    Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Handa N, Kohli SK, Thukral AK, Arora S, Bhardwaj R (2017) Role of se (VI) in counteracting oxidative damage in Brassica juncea L. under Cr (VI) stress. Acta Physiol Plant 39:51

    Article  CAS  Google Scholar 

  • Hasan M, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal stress. Front Plant Sci 8:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21:10983–10996

    Article  CAS  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529

    Article  PubMed  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins–metal chelators with ROS scavenging activity. Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: An overview. Protoplasma 249:599–611

    Article  CAS  PubMed  Google Scholar 

  • Heuschele DJ, Pinson SRM, Smith AP (2017) Metabolic responses to arsenite in rice seedlings that differed in grain arsenic concentration. Crop Sci 57:2671–2687

    Article  CAS  Google Scholar 

  • Hondal RJ, Marino SM, Gladyshev VN (2012) Selenocysteine in thiol/disulfide-like exchange reactions. Antioxidant Redox Signal 18:1675–1689

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1. https://doi.org/10.1155/2012/872875

    Article  CAS  Google Scholar 

  • Houshm A, Moraghebi F (2011) Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. Afric J Agri Res 6:1463–1468

    Google Scholar 

  • Hu Y, Huang YZ, Liu YX (2014) Influence of iron plaque on chromium accumulation and translocation in three rice (Oryza sativa L.) cultivars grown in solution culture. Chem Ecol 30:29–38

    Article  CAS  Google Scholar 

  • Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J (2009) Arabidopsis putative selenium binding protein expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiol 151:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, Mansha M, Mirzaei F (2013) Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agri Sci 4:262–265

    CAS  Google Scholar 

  • Hussein KA, Hassan SHA, Joo JH (2011) Potential capacity of Beauveria bassiana and Metarhizium anisopliae in the biosorption of Cd2+ and Pb2+. J Gen Appl Microbiol 57:347–355

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Rahman MM, Islam MR, Naidu R (2016a) Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environ Int 96:139–155

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016b) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  PubMed  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jiang W, Liu D (2000) Effects of Pb2+ on root growth, cell division, and nucleolus of Zea mays L. Bull Environ Contam Toxicol 65:786–793

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Fan J, Liu R, Sun R (2015) Single and joint toxicity of sulfamonomethoxine and cadmium on three agricultural crops. Soil Sediment Contam Int J 24:454–470

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Ratón, p 505

    Google Scholar 

  • Kang YJ (2006) Metallothionein redox cycle and function. Exp Biol Med 231:1459–1467

    Article  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2012) A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+). Protoplasma 249:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2013) Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 250:53–62

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2015) Adaptations to oxidative stress in Zea mays roots under short term Pb2+ exposure. Biologia 70:190–197

    Google Scholar 

  • Kelepertzis E (2014) Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma 221–222:82–90

    Article  CAS  Google Scholar 

  • Keltjens WG, van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    Article  CAS  Google Scholar 

  • Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8:10301. https://doi.org/10.1038/s41598-018-28712-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan F, Hussain S, Tanveer M, Khan S, Hussain HA, Iqbal B, Geng M (2018) Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings. Environ Sci Pollut Res 25:21185. https://doi.org/10.1007/s11356-018-2262-1

    Article  CAS  Google Scholar 

  • Kikui S, Sasaki T, Maekawa M, Miyao A, Hirochika H, Matsumoto H, Yamamoto Y (2005) Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination. J Inorg Biochem 99:1837–1844

    Article  CAS  PubMed  Google Scholar 

  • Kisku GC, Barman SC, Bhargava SK (2000) Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollut 120:121–137

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–993

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Joshi UN (2008) Nitrogen metabolism as affected by hexavalent chromium in sorghum (Sorghum bicolor L.). Environ Exp Bot 64:135–144

    Article  CAS  Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Łabanowska M, Filek M, Koscielniak J, Kurdziel M, Kulis E, Hartikainen H (2012) The effect of short term selenium stress on polish and finnish wheat seedlings-EPR, enzymatic and fluorescence studies. J Plant Physiol 169:275–284

    Article  PubMed  CAS  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244

    Article  CAS  PubMed  Google Scholar 

  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rend Biol 334:118–126

    Article  CAS  Google Scholar 

  • Lamhamdi M, Bakrim A, Bouayad N, Aarab A, Lafont R (2013) Protective role of a methanolic extract of spinach (Spinacia oleracea L.) against Pb toxicity in wheat (Triticum aestivum L.) seedlings: beneficial effects for a plant of a nutraceutical used with animals. Environ Sci Pollut Res 20:7377–7385

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Kottke I (2004) Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosci 29(3):329–335

    Article  PubMed  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. https://doi.org/10.3389/fpls.2017.01867

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculı’k M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Cao X, Ma J, Tan X, Xie Y, Xiao H, Wu L (2017) Hexavalent chromium stress enhances the uptake of nitrate but reduces the uptake of ammonium and glycine in pak choi (Brassica chinensis L.). Ecotoxicol Environ Saf 139:384–393

    Article  CAS  PubMed  Google Scholar 

  • Madhan M, Mahesh K, Rao SS (2014) Effect of 24-epibrassinolide on aluminium stress induced inhibition of seed germination and seedling growth of Cajanus cajan (L.) Millsp. Int J Multidiscip Curr Res 2:286–290

    Google Scholar 

  • Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem 7:91–99

    Article  CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrik J (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Pinedo-Hernández J, Díez S (2017) Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res 154:380–388

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Kalaji HM, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54:185–192

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21:9742

    Article  CAS  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fuja M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Nahakpam S, Shah K (2011) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul 63:23–35

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Obata H, Umebayashi M (1993) Production of SH compounds in higher plants of different tolerance to Cd. Plant Soil 155/156:533–536

    Article  Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17

    Article  CAS  PubMed  Google Scholar 

  • Penna S, Nikalje GC (2018) Coping with metal toxicity-cues from halophytes. Front Plant Sci 9:777. https://doi.org/10.3389/fpls.2018.00777

    Article  Google Scholar 

  • Qian J, Li D, Zhan G, Zhang L, Su W, Gao P (2012) Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresour Technol 116:66–73

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ramesar NS, Tavarez M, Ebbs SD, Sankaran RP (2014) Transport and partitioning of lead in Indian mustard (Brassica juncea) and wheat (Triticum aestivum). Biorem J 18:345–355

    Article  CAS  Google Scholar 

  • Rehman ZU, Khan Z, Shah MT, Brusseau ML, Khan SA, Mainhagu J (2017) Transfer of heavy metals from soils to vegetables and associated human health risk in selected sites in Pakistan. Pedosphere 28:666. https://doi.org/10.1016/S1002-0160(17)60440-5

    Article  Google Scholar 

  • Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Rehman MZ, Hannan F, Qayyum MF, Hafeez F, OK YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Robinson B, Greven M, Green S, Sivakumaran S, Davidson P, Clothier B (2006) Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand. Sci Total Environ 364:113–123

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Martín JA, Ramos-Miras JJ, Boluda R, Gil C (2013) Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200–201:180–188

    Article  CAS  Google Scholar 

  • Romanowska E, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116(2):148–154

    Article  CAS  PubMed  Google Scholar 

  • Romanowska E, Wróblewska B, Drozak A, Siedlecka M (2006) High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol Biochem 44(5–6):387–394

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gomez M, del Rio LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31:25–31

    Article  Google Scholar 

  • Romic M, Romic D (2003) Heavy metals distribution in agricultural topsoils in urban area. Environ Geol 43:795–805

    Article  CAS  Google Scholar 

  • Roy SK, Cho S-W, Kwon SJ, Kamal AHM, Kim S-W, Oh M-W, Lee M-S, Chung K-Y, Xin Z, Woo S-H (2016) Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS One 11(2):e0150431. https://doi.org/10.1371/journal.pone.0150431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Sangthong C, Setkit K, Prapagdee B (2016) Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ Sci Pollut Res 23:756–764

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah K, Singh P, Nahakpam S (2013) Effect of cadmium uptake and heat stress on root ultrastructure, membrane damage and antioxidative response in rice seedlings. J Plant Biochem Biotechnol 22(1):103–112

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, Rehman S, Zhaorong D (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants. Ecotoxicol Environ Saf 147:935–944

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78

    Article  Google Scholar 

  • Sharma P, Bhardwaj R (2007) Effect of 24-epibrassinolide on seed germination, seedling growth and heavy metal uptake in Brassica juncea L. Gen Appl Plant Physiol 33:59–73

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39:1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Pandey SN (2011) Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391

    CAS  PubMed  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: An overview. Indian J Pharmacol 43:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Singh S, Srivastava PK, Kumar D, Tripathi DK, Chauhan DK, Prasad SM (2015) Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatal Agric Biotechnol 4:286–295

    Article  Google Scholar 

  • Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticum aestivum L.) plant. Ecol Eng 116:163–173

    Article  Google Scholar 

  • Ślusarczyk J, Wierzbicka M, Suchocki P, Kuraś M (2015) Ultrastructural changes in onion (Allium cepa L.) root tip meristem cells treated with Selol and sodium selenate (IV). Caryologia: Int J Cytol Cytosyst Cytogenet 68:306–316

    Article  Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2003) Physiological response of maize to arsenic contamination. Biol Planta 47(3):449–452

    Article  CAS  Google Scholar 

  • Tahir M, Mirza MS, Hameed S, Dimitrov MR, Smidt H (2015) Cultivation-based and molecular assessment of bacterial diversity in the rhizosheath of wheat under different crop rotations. PLoS One 10:0130030

    Article  CAS  Google Scholar 

  • Tamás L, Mistrík I, Huttová J, Halušková LU, Valentovičová K, Zelinová V (2010) Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 2:221–231

    Article  CAS  Google Scholar 

  • Thakur S, Singh L, Zularisam AW, Sakinah M, Din MFM (2017) Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biol Planta 61:595–598

    Article  CAS  Google Scholar 

  • Tóth G, Hermann T, Szatmári G, Pásztor L (2016) Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ 565:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22:2505–2514

    Article  CAS  Google Scholar 

  • van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vangronsveld J, Cunningham SD (1998) Introduction to the concepts. In: Vangronsveld J (ed) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 1–15

    Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vodyanitskii YN (2016) Standards for the contents of heavy metals in soils of some states. Annal Agrar Sci 14:257–263

    Article  Google Scholar 

  • Wang M, Zhou Q (2005) Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum. Ecotoxicol Environ Saf 60:169–175

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Luo W, Wang Q, He L, Sheng X (2018) Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil. Environ Pollut 241:529–539

    Article  CAS  PubMed  Google Scholar 

  • Wrzaczek M, Brosché M, Kangasjärvi J (2013) ROS signaling loops-production, perception, regulation. Curr Opin Plant Biol 16:575–582

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Wyszkowski M, Radziemska M (2010) Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J Toxicol Environ Health A 73:1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Wyszkowski M, Radziemska M (2013) Assessment of tri- and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut 224:1619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y (2015) De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Plant Sci 236:313–323

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afri J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav P, Kaur R, Kanwar MK, Sharma A, Verma V, Sirhindi G, Bhardwaj R (2018) Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicol Environ Saf 147:725–734

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wei X, Lu J, You J, Wang W, Shi R (2010) Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 73:1982–1987

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang Y, Wei X, You J, Wang W, Lu J, Shi R (2011) Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicol Environ Saf 74:733–740

    Article  CAS  PubMed  Google Scholar 

  • Yangchun Z, Zhenhua Z, Xueyong Z, Jie L (2017) Accumulation and potential sources of heavy metals in the soils of the Hetao irrigation District, Inner Mongolia, China. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60306-0

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Li T, Huang H, Zou T, Zhang X, Yu H, Zheng Z, Wang Y (2012) Cd accumulation and phytostabilization potential of dominant plants surrounding mining tailings. Environ Sci Pollut Res Int 9:3879–3888

    Article  CAS  Google Scholar 

  • Zhang Y, Li Z, Peng Y, Wang X, Peng D, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2015) Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules 20:20939–20954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wu S, Ren B, Chen B (2016) Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains. Mycorrhiza 26:299–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality. Curr Opin Biotechnol 20:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, I., Tahir, M., Daraz, U., Ditta, A., Hussain, M.B., Khan, Z.U.H. (2020). Responses and Tolerance of Cereal Crops to Metal and Metalloid Toxicity. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_14

Download citation

Publish with us

Policies and ethics