Skip to main content

Endophytes: A Hidden Treasure of Novel Antimicrobial Metabolites

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

An endophyte is a microorganism which colonizes the healthy tissues of the host plant without causing any symptoms of disease. The relationship between the endophyte and the host ranges from latent phytopathogenesis to mutualistic symbiosis. Endophytes obtain nutrition and protection from plants and, in return, help their hosts to adapt to different ecological stress conditions by producing certain functional metabolites. Consequently, endophytes are usually metabolically more active than their non-endophytic counterparts. By virtue of their functions in nature, endophytes produce multitude of natural products, particularly those having potential antimicrobial activities. As all the plants analysed for endophytism have been found to possess such organisms, endophytes represent a comparatively unexplored as well as a huge reservoir of bioactive metabolites. In this chapter, an effort is made to present an overview of the potential of endophytic microorganisms as a source for antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, T., Joseph, C., Yang, G., et al. (2001). Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Canadian Journal of Microbiology, 47, 916–924.

    Article  CAS  PubMed  Google Scholar 

  • Aly, A. H., Edrada-Ebel, R., Wray, V., et al. (2008). Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry, 69, 1716–1725.

    Article  CAS  PubMed  Google Scholar 

  • Aly, A. H., Debbab, A., & Proksch, P. (2011). Fungal endophytes: Unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 1829–1845.

    Article  CAS  PubMed  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora, P., Wani, Z. A., Nalli, Y., et al. (2016). Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microbial Ecology, 72(4), 802–812.

    Article  CAS  PubMed  Google Scholar 

  • Auge, R. M., Toler, H. D., Sams, C. E., et al. (2008). Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza, 18(3), 115–121.

    Article  PubMed  Google Scholar 

  • Banik, J. J., & Brady, S. F. (2010). Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Current Opinion in Microbiology, 13, 603–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta, 204(2), 153–168.

    Article  CAS  Google Scholar 

  • Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147.

    Article  PubMed  Google Scholar 

  • Bergmann, S., Schuemann, J., Scherlach, K., et al. (2007). Genome driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nature Chemical Biology, 3, 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Bhoonobtong, A., Sawadsitang, S., Sodngam, S., et al. (2012). Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents. Production International Conference on Biological and Life Sciences, 40, 6–11.

    CAS  Google Scholar 

  • Bok, J. W., Hoffmeister, D., Maggio-Hall, L. A., et al. (2006). Genomic mining for Aspergillus natural products. Chemistry & Biology, 13, 31–37.

    Article  CAS  Google Scholar 

  • Brader, G., Compant, S., Mitter, B., et al. (2014). Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady, S. F., Wagenaar, M. M., Singh, M. P., et al. (2000). The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Organic Letters, 2(25), 4043–4046.

    Article  CAS  PubMed  Google Scholar 

  • Braun, K., Romero, J., Liddell, C., et al. (2003). Production of swainsonine by fungal endophytes of locoweed. Mycological Research, 378, 980–988.

    Article  CAS  Google Scholar 

  • Canova, S., Petta, T., Reyes, L., et al. (2010). Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World Journal of Microbiology and Biotechnology, 26, 2241–2247.

    Article  CAS  Google Scholar 

  • Casella, T. M., Eparvier, V., Mandavid, H., et al. (2013). Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC 2402. Phytochemistry, 96, 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, U. F., Strobel, G. A., Ford, E. J., et al. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscansa. Microbiology, 148(9), 2675–2685.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, U. F., Strobel, G. A., Mullenberg, K., et al. (2006). Munumbicins E-4 and E-5: Novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiology Letters, 255(2), 296–300.

    Article  CAS  PubMed  Google Scholar 

  • Challis, G. L. (2008). Genome miming for novel natural product discovery. Journal of Medicinal Chemistry, 51, 2618–2628.

    Article  CAS  PubMed  Google Scholar 

  • Clardy, J., & Walsh, C. (2004). Lessons from natural molecules. Nature, 432, 829–837.

    Article  CAS  PubMed  Google Scholar 

  • Clay, K., & Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285, 1742–1744.

    Article  CAS  PubMed  Google Scholar 

  • Connon, S. A., & Giovannoni, S. J. (2002). High-throughput methods for culturing microorganisms in very-low nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology, 68, 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corre, C., & Challis, G. L. (2007). Heavy tools for genome mining. Chemistry & Biology, 14, 7–9.

    Article  CAS  Google Scholar 

  • Cui, H. B., Mei, W. L., Miao, C. D., et al. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp. 0935030 of a mangrove plant Acrostichum aureurm. Chinese Journal of Antibiotics, 7.

    Google Scholar 

  • Dai, J. Q., Krohn, K., Florke, U., et al. (2006). Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. European Journal of Organic Chemistry, 15, 3498–3506.

    Article  Google Scholar 

  • Dai, J., Krohn, K., Draeger, S., et al. (2009). New naphthalene chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. European Journal of Organic Chemistry, 10, 1564–1569.

    Article  CAS  Google Scholar 

  • de Assis, S. M. P., da Silveira, E. B., Mariano, R. D. L. R., et al. (1998). Endophytic bacteria-method for isolation and antagonistic potential against cabbage black rot. Summa Phytopathologica, 24(3/4), 216–220.

    Google Scholar 

  • de Carvalho, P. M., & Abraham, W. R. (2012). Antimicrobial and biofilm inhibiting diketopiperazines. Current Medicinal Chemistry, 19(21), 3564–3577.

    Article  PubMed  Google Scholar 

  • Demain, A. L. (1999). Pharmaceutically active secondary metabolites of microorganisms. Applied Microbiology and Biotechnology, 52, 455–463.

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh, S. K., Verekar, S. A., & Bhave, S. V. (2015). Endophytic fungi: A reservoir of antibacterials. Frontiers in Microbiology, 5, 715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, G., Liu, S., Guo, L., et al. (2008). Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. Journal of Natural Products, 71(4), 615–618.

    Article  CAS  PubMed  Google Scholar 

  • Ding, G., Li, Y., Fu, S., et al. (2009). Ambuic acid and torreyanic acid derivatives from the endo lichenic fungus Pestalotiopsis sp. Journal of Natural Products, 72, 182–186.

    Article  CAS  PubMed  Google Scholar 

  • Ding, L., Maier, A., Fiebig, H., et al. (2011). A family of multicyclic indolo sesquiterpenes from a bacterial endophyte. Organic & Biomolecular Chemistry, 9, 4029–4031.

    Article  CAS  Google Scholar 

  • Dunbar, J., Ticknor, L. O., & Kuske, C. R. (2000). Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology, 66, 2943–2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Deeb, B., Fayez, K., & Gherbawy, Y. (2013). Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. Journal of Plant Interactions, 8, 56–64.

    Article  CAS  Google Scholar 

  • Elsebai, M. F., Natesan, L., Kehraus, S., et al. (2011a). HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereale. Journal of Natural Products, 74(10), 2282–2285.

    Article  CAS  PubMed  Google Scholar 

  • Elsebai, M. F., Rempel, V., Schnakenburg, G., et al. (2011b). Identification of a potent and selective cannabinoid CB1 receptor antagonist from Auxarthron reticulatum. ACS Medicinal Chemistry Letters, 2(11), 866–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erbert, C., Lopes, A. A., Yokoya, N. S., et al. (2012). Anti bacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Botanica Marina, 55, 435–440.

    Article  CAS  Google Scholar 

  • Ezra, D., Hess, W. H., & Strobel, G. A. (2004). New endophytic isolates of M. albus, a volatile antibiotic-producing fungus. Microbiology, 150, 4023–4031.

    Article  CAS  PubMed  Google Scholar 

  • Ezra, D., Lousky, T., & Elad, Y. (2009). Endophytes as biological control agents for plant pathogens. Joint with COST Action 873, Working Group, 4(43), 11–14.

    Google Scholar 

  • Felczykowska, A., Bloch, S. K., Nejman-Falenczyk, B., et al. (2012). Metagenomic approach in the investigation of new bioactive compounds in the marine environment. Acta Biochimica Polonica, 59, 501–505.

    Article  CAS  PubMed  Google Scholar 

  • Fischbach, M. A., & Walsh, C. T. (2006). Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chemical Reviews, 106, 3468–3496.

    Article  CAS  PubMed  Google Scholar 

  • Gagne-Bourgue, F., Aliferis, K. A., Seguin, P., et al. (2013). Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Journal of Applied Microbiology, 114(3), 836–853.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Li, X., Zhang, Y., et al. (2011). Conidiogenones H and I, two new diterpenes of cyclopiane class from a marine derived endophytic fungus Penicillium chrysogenum QEN-24S. Chemistry & Biodiversity, 8, 1748–1753.

    Article  CAS  Google Scholar 

  • Gao, J. M., Yang, S. X., & Qin, J. C. (2013). Azaphilones: Chemistry and biology. Chemical Reviews, 113(7), 4755–4811.

    Article  CAS  PubMed  Google Scholar 

  • Gouda, S., Das, G., Sen, S. K., et al. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin, M. A., Spakowicz, D. J., Gianoulis, T. A., et al. (2010). Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology, 156, 3814–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover, N. D. (2010). Echinocandins: A ray of hope in antifungal drug therapy. The Indian Journal of Pharmacology, 42(1), 9.

    Article  CAS  PubMed  Google Scholar 

  • Guo, B., Wang, Y., Sun, X., et al. (2008). Bioactive natural products from endophytes: A review. Applied Biochemistry and Microbiology, 44(2), 136–142.

    Article  CAS  Google Scholar 

  • Han, Z., Mei, W. L., Cui, H. B., et al. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp. of mangrove plant Cerbera manghas. Chemical Journal of Chinese Universities, 29(4), 749–752.

    CAS  Google Scholar 

  • Haraguchi, H., Abo, T., Hashimoto, K., et al. (1992). Action-mode of antimicrobial altersolanol A in Pseudomonas aeruginosa. Bioscience, Biotechnology, and Biochemistry, 56, 1221–1224.

    Article  CAS  Google Scholar 

  • Harper, J. K., Arif, A. M., Ford, E. J., et al. (2003). Pestacin: A 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59(14), 2471–2476.

    Article  CAS  Google Scholar 

  • Harri, E., LoeMer, W., Singh, H. P., et al. (1963). Die constitution von brefeldin A. Helvetica Chimica Acta, 46, 1235–1243.

    Article  Google Scholar 

  • Hertweck. (2009). Hidden biosynthetic treasures brought to light. Nature Chemical Biology, 5, 450–452.

    Article  CAS  PubMed  Google Scholar 

  • Heywood, V. H. (Ed.). (1995). Global biodiversity assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hoffman, A. M., Mayer, S. G., Strobel, G. A., et al. (2008). Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 69, 1049–1056.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z. J., Cai, X. L., Shao, C. L., et al. (2008). Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry, 69, 1604–1608.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, H., Ishikawa, J., Hanamoto, A., et al. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology, 21, 526–531.

    Article  PubMed  Google Scholar 

  • Islam, A. S., Math, R., Kim, J., et al. (2010). Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Current Microbiology, 61, 346–356.

    Article  CAS  Google Scholar 

  • Jang, H. B., Kim, Y. K., Del-Castillo, C. S., et al. (2012). RNA Seq-based meta transcriptomic and microscopic investigation reveals novel metallo proteases of Neobodo sp. as potential virulence factors for soft tunic syndrome in Halocynthia roretzi. PLoS One, 7(12), e52379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 20(4), 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y. M., Lee, C. K., & Cho, K. M. (2013). Diversity and antimicrobial activity of isolated endophytic bacteria from Deodeok (Codonopsis lanceolata) of different locations and ages. African Journal of Microbiology Research, 7(12), 1015–1028.

    Google Scholar 

  • Keller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism-from biochemistry to genomics. Nature Reviews Microbiology, 3, 937–947.

    Article  CAS  PubMed  Google Scholar 

  • Kharwar, R. N., Verma, V. C., Kumar, A., et al. (2009). Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Current Microbiology, 58(3), 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Kharwar, R. N., Mishra, A., Gond, S. K., et al. (2011). Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Natural Product Reports, 28(7), 1208–1228.

    Article  CAS  PubMed  Google Scholar 

  • Khosla, C. (1997). Harnessing the biosynthetic potential of modular polyketide synthases. Chemical Reviews, 97, 2577–2590.

    Article  CAS  PubMed  Google Scholar 

  • Knappe, T. A., Linne, U., Zirah, S., et al. (2008). Isolation and structural characterization of Capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. Journal of the American Chemical Society, 13, 11446–11454.

    Article  CAS  Google Scholar 

  • Krajaejun, T., Lowhnoo, T., Yingyong, W., et al. (2012). In vitro antimicrobial activity of volatile organic compounds from Muscodor crispans against the pathogenic oomycete Pythium insidiosum. The Southeast Asian Journal of Tropical Medicine and Public Health, 43(6), 1474.

    PubMed  Google Scholar 

  • Krohn, K., Kouam, S. F., Cludius-Brandt, S., et al. (2008a). Bioactive nitro naphthalenes from an endophyticf ungus, Coniothyrium sp., and their chemical synthesis. European Journal of Organic Chemistry, 21, 3615–3618.

    Article  CAS  Google Scholar 

  • Krohn, K., Sohrab, M. H., vanRee, T., et al. (2008b). Biologically active secondary metabolites from fungi, 39. Dinemasones A, B and C: New bioactive metabolites from the endophytic fungus Dinemasporium strigosum. European Journal of Organic Chemistry, 39, 5638–5646.

    Article  CAS  Google Scholar 

  • Kudalkar, P., Strobel, G., Hassan, S. R. U., et al. (2012). Muscodor sutura a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 53, 319–325.

    Article  CAS  Google Scholar 

  • Kusari, S., Zühlke, S., & Spiteller, M. (2009). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72, 2–7.

    Article  CAS  PubMed  Google Scholar 

  • Laguerre, G., Allard, M. R., Revoy, F., et al. (1994). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology, 60, 56–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D. H., Zo, Y. G., & Kim, S. J. (1996). Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Applied and Environmental Microbiology, 62, 3112–3120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. Y., & Strobel, G. A. (2001). Jesterone andhydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57(2), 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. Y., Strobel, G., Harper, J., et al. (2000). Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. q uercina. Organic Letters, 2(6), 767–770.

    Article  PubMed  CAS  Google Scholar 

  • Li, E., Jiang, L., Guo, L., et al. (2008). Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorganic & Medicinal Chemistry, 16(17), 7894–7899.

    Article  CAS  Google Scholar 

  • Li, S., Wei, M., Chen, G., et al. (2012). Two new dihydro isocoumarins from the endophytic fungus Aspergillus sp. collected from the South China Sea. Chemistry of Natural Compounds, 48, 371–373.

    Article  CAS  Google Scholar 

  • Li, H., Xiao, J., Gao, Y. Q., et al. (2014). Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. Journal of Agricultural and Food Chemistry, 62(17), 3734–3741.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H. (2008). Sordarin, an antifungal agent with a unique mode of action. Beilstein Journal of Organic Chemistry, 4, 31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Dong, M., Chen, X., et al. (2008). Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methyl coumarin. Applied Microbiology and Biotechnology, 78, 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Qiao, H., Huang, L., et al. (2009). Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biological Control, 49, 277–285.

    Article  Google Scholar 

  • Loesgen, S., Bruhn, T., Meindl, K., et al. (2011). (+)-Flavipucine, the missing member of the pyridione epoxide family of fungal antibiotics. European Journal of Organic Chemistry, 011, 5156–5162.

    Article  CAS  Google Scholar 

  • Lu, H., Zou, W. X., Meng, J. C., et al. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151, 67–73.

    Article  CAS  Google Scholar 

  • Luo, J., Liu, X., Li, E., et al. (2013). Arundinols A-C and Arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. Journal of Natural Products, 76, 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L., Cao, Y., & Cheng, M. (2013). Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek, 103(2), 299–312.

    Article  PubMed  Google Scholar 

  • Macı´as-Rubalcava, M. L., Herna´ndez-Bautista, B. E., Jime´nez-Estrada, M., et al. (2008). Naphthoquinone spiroketal with allele chemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry, 69, 1185–1196.

    Article  CAS  Google Scholar 

  • Marco-Contelles, J., Molina, M. T., & Anjum, S. (2004). Naturally occurring cyclohexane epoxides: Sources, biological activities, and synthesis. Chemical Reviews, 104(6), 2857–2900.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine, J. B., Bachmann, B. O., Piraee, M., et al. (2005). Microbial genomics as a guide to drug discovery, structural elucidation: ECO02301, a novel antifungal agent, as an example. Journal of Natural Products, 68, 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Meng, L. H., Zhang, P., Li, X. M., et al. (2015). Penicibrocazines A–E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Marine Drugs, 13(1), 276–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menpara, D., & Chanda, S. (2013). Endophytic bacteria-unexplored reservoir of antimicrobials for combating microbial pathogens. In Microbial pathogens and strategies for combating them: Science, technology and education (pp. 1095–1103). Badajoz: Formatex Research Center.

    Google Scholar 

  • Meshram, V., Kapoor, N., & Saxena, S. (2013). Muscodor kashayum sp. nov.–a new volatile anti-microbial producing endophytic fungus. Mycology, 4(4), 196–204.

    Google Scholar 

  • Miller, C. M., Miller, R. V., Garton-Kenny, D., et al. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84(6), 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Mills, L., Leaman, T. M., Taghavi, S. M., et al. (2001). Leifsonia xyli-like bacteria are endophytes of grasses in eastern Australia. Australasian Plant Pathology, 30(2), 145–151.

    Article  Google Scholar 

  • Mitchell, A. M., Strobel, G. A., Moore, E., et al. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 156(1), 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Momesso, L. S., Kawano, C. Y., Ribeiro, P. H., et al. (2008). Chaetoglobosins produced by Chaetomium globosum, an endophytic fungus found in association with Viguiera robusta Gardn (Asteraceae). Quim Nova, 31, 1680–1685.

    Article  CAS  Google Scholar 

  • Morath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2–3), 73–83.

    Article  Google Scholar 

  • Mousa, W. K., & Raizada, M. N. (2013). The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Frontiers in Microbiology, 4, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalli, Y., Mirza, D. N., Wani, Z. A., et al. (2015). Phialomustin A–D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Advances, 115, 95307–95312.

    Article  Google Scholar 

  • Noble, H. M., Langley, D., Sidebottom, P. J., et al. (1991). An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycological Research, 95, 1439–1440.

    Article  CAS  Google Scholar 

  • Oliynyk, M., Samborsky, M., Lester, J. B., et al. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL2338. Nature Biotechnology, 25, 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen, I. T., Press, C. M., Ravel, J., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23, 873–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peric-Concha, N., & Long, P. F. (2003). Mining the microbial metablome: A new frontier for natural product lead discovery. Drug Discovery Today, 8, 1078–1084.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, E. A., Carvalho, J. M., dos Santos, D. C., et al. (2013). Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. Anais Da Academia Brasileira De Ciencias, 85(4), 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  • Pocasangre, L., Sikora, R. A., Vilich, V., et al. (2000). Survey of banana endophytic fungi from Central America and screening for biological control of the burrowing nematode (Radopholus similis). InfoMusa, 9(1), 3–5.

    Google Scholar 

  • Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., et al. (2007). A new dihydro benzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76. Chemical & Pharmaceutical Bulletin, 55, 1404–1405.

    Article  CAS  Google Scholar 

  • Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., et al. (2008). Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 69, 1900–1902.

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro, A., & Bayman, P. (2011). Hidden fungi, emergent properties: Endophytes and microbiomes. Annual Review of Phytopathology, 49, 291–315.

    Article  CAS  PubMed  Google Scholar 

  • Puri, S. C., Nazir, A., Chawla, R., et al. (2006). The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. Journal of Biotechnology, 122(4), 494–510.

    Article  CAS  PubMed  Google Scholar 

  • Qadri, M., Johri, S., Shah, B. A., et al. (2013). Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus, 2(1), 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qadri, M., Rajput, R., Abdin, M. Z., et al. (2014). Diversity, molecular phylogeny and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microbial Ecology, 67(4), 877–887.

    Article  PubMed  Google Scholar 

  • Qadri, M., Nalli, Y., Jain, S. K., et al. (2017). An insight into the secondary metabolism of Muscodor yucatanensis: Small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. FEMS Microbiology Ecology, 73(4), 954–965.

    Article  CAS  Google Scholar 

  • Qin, J. C., Zhang, Y. M., Gao, J. M., et al. (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic & Medicinal Chemistry Letters, 9(6), 1572–1574.

    Article  CAS  Google Scholar 

  • Rakotoniriana, E., Rafamantanana, M., Randriamampionona, D., et al. (2013). Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Van Leeuwenhoek, 103, 121–133.

    Article  PubMed  Google Scholar 

  • Raviraja, N. S. (2005). Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. Journal of Basic Microbiology, 45(3), 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, B., Pfeifer, U., Schwab, H., et al. (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 68(5), 2261–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riyaz-Ul-Hassan, S., Strobel, G. A., Booth, E., et al. (2012). Modulation of volatile organic compound formation in the mycodiesel producing endophyte- Hypoxylon sp. C1-4. Microbiology, 158, 464–473.

    Google Scholar 

  • Riyaz-Ul-Hassan, S., Strobel, G., Geary, B., et al. (2013). An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. Journal of Microbiology and Biotechnology, 23(1), 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Rukachaisirikul, V., Sommart, U., Phongpaichit, S., et al. (2008). Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 69, 783–787.

    Article  CAS  PubMed  Google Scholar 

  • Saleem, M., Tousif, M. I., Riaz, N., et al. (2013). Cryptosporioptide: A bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry, 93, 199–202.

    Article  CAS  PubMed  Google Scholar 

  • Schroeckh, V., Scherlach, K., Nützmann, H. W., et al. (2009). Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. PNAS, 106, 14558–14563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastianes, F. L. S., Cabedo, N., ElAouad, N., et al. (2012). 3-Hydroxy propionic acid as an anti bacterial agent from endophytic fungus Diaporthe phaseolorum. Current Microbiology, 65, 622–632.

    Article  CAS  PubMed  Google Scholar 

  • Senadeera, S. P., Wiyakrutta, S., Mahidol, C., et al. (2012). A novel tri cyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp. Organic & Biomolecular Chemistry, 10, 7220–7226.

    Article  CAS  Google Scholar 

  • Seo, W., Lim, W., Kim, E., et al. (2010). Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. Journal of Korean Society for Applied Biological Chemistry, 53, 493–503.

    Article  CAS  Google Scholar 

  • Shang, Z., Li, X. M., Li, C. S., et al. (2012). Diverse secondary metabolites produced by marine derived fungus Nigrospora sp. MA75 on various culture media. Chemistry & Biodiversity, 9, 1338–1348.

    Article  CAS  Google Scholar 

  • Shukla, S. T., Habbu, P. V., Kulkarni, V. H., et al. (2014). Endophytic microbes: A novel source for biologically/pharmacologically active secondary metabolites. The Asian Journal of Pharmacology, Toxicology, 2(3), 1–6.

    CAS  Google Scholar 

  • Shweta, S., Bindu, J. H., Raghu, J., et al. (2013). Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd. (Icacinaceae). Phytomedicine, 20(10), 913–917.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, I. N., Zahoor, A., Hussain, H., et al. (2011). Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: Absolute configuration of diversonol. Journal of Natural Products, 74, 365–373.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, S. A., & Marahiel, M. A. (2005). Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chemical Reviews, 105, 715–738.

    Article  CAS  PubMed  Google Scholar 

  • Silva, G. H., Teles, H. L., & Zanardi, L. M. (2006). Cadinaneses quiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry, 67, 1964–1969.

    Article  CAS  PubMed  Google Scholar 

  • Singh, L. P., Gill, S. S., & Tuteja, N. (2011a). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6(2), 175–191.

    Article  CAS  Google Scholar 

  • Singh, S. K., Strobel, G. A., Knighton, B., et al. (2011b). An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microbial Ecology, 61, 729–739.

    Article  PubMed  Google Scholar 

  • Singh, R. K., Malik, N., & Singh, S. (2013). Improved nutrient use efficiency increases plant growth of rice with the use of IAA- overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microbial Ecology, 66(2), 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Staley, J. T., Castenholz, R. W., Colwell, R. R., et al. (1997). The microbial world: Foundation of the biosphere (p. 32). Washington, DC: American Academy of Microbiology.

    Google Scholar 

  • Staniek, A., Woerdenbag, H. J., & Kayser, O. (2009). Taxomyces andreanae: A presumed paclitaxel producer demystified? Planta Medica, 75, 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  • Stierle, A., Strobel, G. A., & Stierle, D. B. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214–216.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G. A. (2003). Endophytes as a source of bioactive products. Microbes and Infection, 6, 535–544.

    Article  CAS  Google Scholar 

  • Strobel, G. (2006). Harnessing endophytes for industrial microbiology. Current Opinion in Microbiology, 9, 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G. (2006a). Muscodor albus and its biological promise. Journal of Industrial Microbiology & Biotechnology, 33(7), 514–522.

    Article  CAS  Google Scholar 

  • Strobel, G. A., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel, G. A., Torzynski, R., & Bollon, A. (1997). Acremonium sp.-a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Science, 128, 97–108.

    Article  CAS  Google Scholar 

  • Strobel, G. A., Miller, R. V., Martinez-Miller, C., et al. (1999). Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology, 145(8), 1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G. A., Dirkse, E., Sears, J., et al. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147(11), 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G. B., Daisy, U., Castillo, U., et al. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G. A., Knighton, B., Kluck, K., et al. (2008). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology, 154, 3319–3328.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., et al. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 320, 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Subban, K., Subramani, R., & Johnpaul, M. (2013). A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Natural Product Research, 27, 1445–1449.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Lu, Z., Bie, X., et al. (2006). Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World Journal of Microbiology and Biotechnology, 22, 1259–1266.

    Article  CAS  Google Scholar 

  • Sun, H., He, Y., Xiao, Q., et al. (2013a). Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. African Journal of Microbiology Research, 7(16), 1496–1504.

    Article  CAS  Google Scholar 

  • Sun, P., Huo, J., Kurtan, T., et al. (2013b). Structural and stereo chemical studies of hydroxyl anthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality, 25, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Takai, K., & Horikoshi, K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66, 5066–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejesvi, M. V., & Prakash, H. S. (2009). Phylogenetic tools for the identification of fungi. In K. R. Sridhar (Ed.), Frontiers in fungal ecology, diversity and metabolites (1st ed., pp. 285–299). New Delhi: I. K. International Pvt Ltd..

    Google Scholar 

  • Tiwari, R., Kalra, A., Darokar, M. P., et al. (2010). Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Current Microbiology, 60(3), 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Tomsheck, A., Strobel, G. A., Booth, E., et al. (2010). Hypoxylon sp. an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microbial Ecology, 60, 903–914.

    Article  CAS  PubMed  Google Scholar 

  • Tunali, B., Shelby, R. A., Morgan-Jones, G., et al. (2000). Endophytic fungi and ergot alkaloids in native Turkish grasses. Phytoparasitica, 28(4), 375–377.

    Article  Google Scholar 

  • Udwary, D. W., Zeigler, L., Asolkar, R. N., et al. (2007). Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences, 104, 10376–10381.

    Article  CAS  Google Scholar 

  • Vianna, M. E., Conrads, G., Gomes, B. P., et al. (2009). T-RFLP based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiology and Immunology, 24, 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar, M. M., & Clardy, J. (2001). Dicerandrols, new antibiotic and cytotoxic dimmers produced by the fungus Phomopsis longicolla isolated from an endangered mint. Journal of Natural Products, 64, 1006–1009.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. W., Ye, Y. H., Ding, H., et al. (2010). Benzophenones from Guignardia sp. IFB-E028, an endophyte on Hopea hainanensis. Chemistry & Biodiversity, 7, 216–220.

    Article  CAS  Google Scholar 

  • Wang, L. W., Zhang, Y. L., Lin, F. C., et al. (2011a). Natural products with antitumor activity from endophytic fungi. Mini Reviews in Medicinal Chemistry, 11, 1056–1074.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q. X., Li, S. F., Zhao, F., et al. (2011b). Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia, 82, 777–781.

    Article  CAS  PubMed  Google Scholar 

  • Wani, Z. A., Mirza, D. N., Arora, P., et al. (2016). Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn. Fungal Biology, 120(12), 1509–1524.

    Article  PubMed  Google Scholar 

  • Wani, Z. A., Kumar, A., Sultan, P., et al. (2017). Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Scientific Reports, 7(1), 8598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81, 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Yamaji, K., Watanabe, Y., Masuya, H., et al. (2016). Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One, 11(12), e0169089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yedukondalu, N., Arora, P., Wadhwa, B., et al. (2017). Diapolic acid A–B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. The Journal of Antibiotics, 70(2), 212.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., Zhang, L., Li, L., et al. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 165(6), 437–449.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Krohn, K., Draeger, S., et al. (2008). Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. Journal of Natural Products, 71, 1078–1081.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Mou, Y., Shan, T., et al. (2010). Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Parispolyphylla var. yunnanensis. Molecules, 15, 7961–7970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinniel, D. K., Lambrecht, P., Harris, N. B., et al. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology, 68(5), 2198–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, W. X., Meng, J. C., Lu, H., et al. (2000). Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. Journal of Natural Products, 63, 1529–1530.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PA and SF are supported by the Department of Science and Technology, New Delhi, India, through INSPIRE Research Fellowship. T.A. is thankful to the UGC, India, for Junior Research Fellowship. The senior author acknowledges the grant through the project MLP1008. This work is part of the PhD thesis of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Riyaz-Ul-Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, P., Ahmad, T., Farooq, S., Riyaz-Ul-Hassan, S. (2019). Endophytes: A Hidden Treasure of Novel Antimicrobial Metabolites. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_8

Download citation

Publish with us

Policies and ethics